Skip to content

nasheydari/Task-Assignment-Hypergraph-Discovery

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 

Repository files navigation

Task-Assignment-Hypergraph-Discovery

Here you can find the code for the paper "Assigning Entities to Teams as a Hypergraph Discovery Problem"

Install Required Packages

pip install -r dependency.txt

Set the config file in configs directory and run "run.py" with the specified config file.

Parameters/Configs

Mode Parameters

  • data: APS/MAG
  • Algorithm: CSA/CSA_Bipartite/Greedy/GreedyBipartite/RandomGreedy/RandomGreedyBipartite

Folder Paths

  • logging_path: logging path
  • folder_path: data folder path
  • res_path: result saving path

Optimization Parameters

  • epoch: number of optimization rounds
  • Nt: number of optimization rounds for each temperature
  • tol: convergence tolerace
  • temp: initial temperature
  • temp_decay: temperature decay rate
  • nremove: number of removed assignments in each perturbation
  • nswap: number of assignment swaps in each perturbation
  • sym: symmetric algebraic connectivity: default False
  • pen, pen1, pen2, pen3: coefficients of the penalty terms
  • return: probability of going back to the best found solution at each round
  • pack: energy pack size

Robustness

To evaluate the solution robustness tp node failures, run "robustness.py" file with the config specified in "Robustness.json"

Parameters/Configs for Robustness

  • set any of APS/Bipartite_APS/Best_APS/Initial_APS/Greedy_APS/MAG/Bipartite_MAG/Best_MAG/Greedy_MAG/Initial_MAG to True to evaluate the corresponding solution

  • Natt: number of removed (attacked) nodes

  • niter: number of times the solution is evaluated

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages