Skip to content

Code to fit a multistate occupancy model with uncertainty in Jags

Notifications You must be signed in to change notification settings

oliviergimenez/multistate_occupancy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Fitting a multistate occupancy model with uncertainty in Jags

Motivation

We would like to implement a multistate single-season occupancy model (Nichols et al. 2007) in Jags. To do so, we adopt a hidden Markov modeling formulation of the model (Gimenez et al. 2014 and associated Wiki). To illustrate the analysis, we use simulated data provided by Donovan et al. (2007).

Data

The states are 1 for site unoccupied, 2 for occupied with no production of young ('uncertain' non-breeding state) and 3 for occupied with successful reproduction ('certain' breeding state). The observations are 0 for species not observed, 1 for species observed and 2 for species observed with young.

These data were simulated with the following parameter values:

  • probability that the site is occupied by non-breeders psi1 = 0.3;
  • probability that the site is occupied by breeders psi2 = 0.5;
  • detection probability of non-breeders p1 = 0.5;
  • detection probability of breeders p2 = 0.7;
  • probability of detecting evidence of reproduction, given the site is occupied with young delta = 0.8;
  • number of sites R = 250.
dat <- readr::read_csv2('https://raw.githubusercontent.com/oliviergimenez/multistate_occupancy/master/multiocc.csv')
#head(dat)
#tail(dat)
#sum(dat==1)
#sum(dat==2)
#sum(dat==0)

Model fitting in JAGS

Let's write the model:

model <- function() {

  # Define all parameters	
  # Probabilities for initial states
  px0[1] <- 1 / (1 + prop[1] + prop[2])
  px0[2] <- prop[1] / (1 + prop[1] + prop[2]) # prob. of occupancy state 1
  px0[3] <- prop[2] / (1 + prop[1] + prop[2]) # prob. of occupancy state 2
  
  # Observation process
  # step 1: detection
  po1[1,1] <- 1
  po1[1,2] <- 0
  po1[1,3] <- 0
  po1[2,1] <- 1 - p1
  po1[2,2] <- p1 # detection state 1
  po1[2,3] <- 0
  po1[3,1] <- 1 - p2
  po1[3,2] <- 0
  po1[3,3] <- p2 # detection state 2
  
  # step 2: assignement
  po2[1,1] <- 1
  po2[1,2] <- 0
  po2[1,3] <- 0
  po2[2,1] <- 0
  po2[2,2] <- 1
  po2[2,3] <- 0
  po2[3,1] <- 0
  po2[3,2] <- 1 - delta
  po2[3,3] <- delta # assignment conditional on detection
  # form the matrix product
  po <- po1 %*% po2

  # State process
  px[1,1] <- 1
  px[1,2] <- 0
  px[1,3] <- 0
  px[2,1] <- 0
  px[2,2] <- 1
  px[2,3] <- 0
  px[3,1] <- 0
  px[3,2] <- 0
  px[3,3] <- 1

  for (i in 1:N){ # loop over site
    
    # state eq.
    z[i] ~ dcat(px0[1:3]) 

    # obs eq.
    for (j in 1:K){  # loop over occasion
      y[i,j] ~ dcat(po[z[i],1:3])
    }
  }

  # Prior 
  for (j in 1:2){ # use generalized logit for initial states
  log(prop[j]) <- theta[j]
  theta[j] ~ dnorm(0,1) 
  }
  p1 ~ dunif(0, 1)
  p2 ~ dunif(0, 1)
  delta ~ dunif(0, 1)

  psi1 <- prop[1] / (1 + prop[1] + prop[2]) # prob. of occupancy state 1
  psi2 <- prop[2] / (1 + prop[1] + prop[2]) # prob. of occupancy state 2
 
  }

Form the list of data:

N <- nrow(dat)
K <- ncol(dat)
y <- as.matrix(dat + 1)
mydatax <- list(N = N, K = K, y = y)

Form the list of initial values:

zinit <- apply(y,1,max)
init1 <- list(p1 = 0.3, theta = rnorm(2,0,1), z = zinit)
init2 <- list(p1 = 0.7, theta = rnorm(2,0,1), z = zinit)
inits <- list(init1, init2)

Specify the parameters to be monitored:

parameters <- c("psi1","psi2","p1","p2","delta")

Tadaaaaaaan, fit the model:

library(R2jags)
out <- jags(mydatax, inits, parameters, model, n.chains=2, n.iter=2000, n.burnin=500)

Results

Check convergence:

traceplot(out,ask=F)

Posterior densities:

library(lattice)
jagsfit.mcmc <- as.mcmc(out)
densityplot(jagsfit.mcmc)

Print results:

print(out,digits = 2)

And compare with E-SURGE results:

#Par# 54# C( 3, 3)( 1, 1)( 1 2) | 0.794364460 delta 0.731225549 0.845798972 0.029218536
#Par# 24# E( 2, 2)( 1, 1)( 1 1) | 0.515786096 p1 0.425952230 0.604611235 0.046070203
#Par# 25# E( 3, 3)( 1, 1)( 1 1) | 0.704231715 p2 0.646969850 0.755712647 0.027819907
#Par# 2# IS( 1, 2)( 1, 1)( 1 1) | 0.295674999 psi1 0.228163996 0.373495359 0.037265126
#Par# 3# IS( 1, 3)( 1, 1)( 1 1) | 0.502904937 psi2 0.432898323 0.572797837 0.035924248

References

Donovan, T. M. and J. Hines (2007) Exercises in occupancy modeling and estimation - Exercise 16 'Multiple occupancy states models'. http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm

Gimenez, O., L. Blanc, A. Besnard, R. Pradel, P. F. Doherty Jr, E. Marboutin and R. Choquet (2014). Fitting occupancy models with E-SURGE: hidden-Markov modelling of presence-absence data. Methods in Ecology and Evolution. 5: 592–597.

Nichols, J. D., Hines, J. E., Mackenzie, D. I., Seamans, M. E. and Gutiérrez, R. J. (2007). Occupancy estimation and modeling with multiple states and state uncertainty. Ecology 88: 1395-1400.

Releases

No releases published

Packages

No packages published