-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit_DGF_mat.py
163 lines (154 loc) · 6.03 KB
/
submit_DGF_mat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
from utils.training_util import load_checkpoint
from utils.data_provider import *
from model.KPN_DGF import KPN_DGF,Att_KPN_DGF,Att_Weight_KPN_DGF,Att_KPN_Wavelet_DGF
from collections import OrderedDict
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import glob
from PIL import Image
import time
import math
from utils.training_util import calculate_psnr, calculate_ssim
import scipy.io
torch.manual_seed(0)
def load_data(image_noise,burst_length):
image_noise_hr = image_noise
upscale_factor = int(math.sqrt(burst_length))
image_noise = pixel_unshuffle(image_noise, upscale_factor)
while len(image_noise) < burst_length:
image_noise = torch.cat((image_noise,image_noise[-2:-1]),dim=0)
if len(image_noise) > burst_length:
image_noise = image_noise[0:8]
image_noise_burst_crop = image_noise.unsqueeze(0)
return image_noise_burst_crop,image_noise_hr.unsqueeze(0)
def test_multi(args):
color = True
burst_length = args.burst_length
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.model_type == "attKPN":
model = Att_KPN_DGF(
color=color,
burst_length=burst_length,
blind_est=True,
kernel_size=[5],
sep_conv=False,
channel_att=True,
spatial_att=True,
upMode="bilinear",
core_bias=False
)
elif args.model_type == "attKPN_Wave":
model = Att_KPN_Wavelet_DGF(
color=color,
burst_length=burst_length,
blind_est=True,
kernel_size=[5],
sep_conv=False,
channel_att=True,
spatial_att=True,
upMode="bilinear",
core_bias=False
)
elif args.model_type == "attWKPN":
model = Att_Weight_KPN_DGF(
color=color,
burst_length=burst_length,
blind_est=True,
kernel_size=[5],
sep_conv=False,
channel_att=True,
spatial_att=True,
upMode="bilinear",
core_bias=False
)
elif args.model_type == "KPN":
model = KPN_DGF(
color=color,
burst_length=burst_length,
blind_est=True,
kernel_size=[5],
sep_conv=False,
channel_att=False,
spatial_att=False,
upMode="bilinear",
core_bias=False
)
else:
print(" Model type not valid")
return
checkpoint_dir = args.checkpoint
if not os.path.exists(checkpoint_dir) or len(os.listdir(checkpoint_dir)) == 0:
print('There is no any checkpoint file in path:{}'.format(checkpoint_dir))
# load trained model
ckpt = load_checkpoint(checkpoint_dir,cuda=device=='cuda',best_or_latest=args.load_type)
state_dict = ckpt['state_dict']
# if not args.cuda:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
# else:
# model.load_state_dict(ckpt['state_dict'])
model.to(device)
print('The model has been loaded from epoch {}, n_iter {}.'.format(ckpt['epoch'], ckpt['global_iter']))
# switch the eval mode
model.eval()
# model= save_dict['state_dict']
trans = transforms.ToPILImage()
torch.manual_seed(0)
all_noisy_imgs = scipy.io.loadmat(args.noise_dir)['BenchmarkNoisyBlocksSrgb']
mat_re = np.zeros_like(all_noisy_imgs)
# all_clean_imgs = scipy.io.loadmat(args.gt)['siddplus_valid_gt_srgb']
i_imgs,i_blocks, _,_,_ = all_noisy_imgs.shape
psnrs = []
ssims = []
for i_img in range(i_imgs):
for i_block in range(i_blocks):
image_noise = transforms.ToTensor()(Image.fromarray(all_noisy_imgs[i_img][i_block]))
image_noise,image_noise_hr = load_data(image_noise,burst_length)
image_noise_hr = image_noise_hr.to(device)
# begin = time.time()
image_noise_batch = image_noise.to(device)
# print(image_noise_batch.size())
burst_size = image_noise_batch.size()[1]
burst_noise = image_noise_batch.to(device)
# print(burst_noise.size())
# print(image_noise_hr.size())
if color:
b, N, c, h, w = burst_noise.size()
feedData = burst_noise.view(b, -1, h, w)
else:
feedData = burst_noise
# print(feedData.size())
pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...],image_noise_hr)
# del pred_i
pred = pred.detach().cpu()
mat_re[i_img][i_block] = np.array(trans(pred[0]))
return mat_re
if __name__ == "__main__":
# argparse
parser = argparse.ArgumentParser(description='parameters for training')
parser.add_argument('--noise_dir','-n', default='data/BenchmarkNoisyBlocksSrgb.mat', help='path to noise image file')
parser.add_argument('--burst_length','-b' ,default=4, type=int, help='batch size')
parser.add_argument('--cuda', '-c', action='store_true', help='whether to train on the GPU')
parser.add_argument('--checkpoint', '-ckpt', type=str, default='att_kpn_dgf_4_new',
help='the checkpoint to eval')
parser.add_argument('--model_type','-m' ,default="attKPN", help='type of model : KPN, attKPN, attWKPN , attKPN_Wave')
parser.add_argument('--load_type', "-l" ,default="best", type=str, help='Load type best_or_latest ')
args = parser.parse_args()
#
mat_re = test_multi(args)
mat = scipy.io.loadmat(args.noise_dir)
# print(mat['BenchmarkNoisyBlocksSrgb'].shape)
del mat['BenchmarkNoisyBlocksSrgb']
mat['DenoisedNoisyBlocksSrgb'] = mat_re
# print(mat)
scipy.io.savemat("SubmitSrgb.mat",mat)
# gt_file = "data/ValidationGtBlocksSrgb.mat"
# mat = scipy.io.loadmat(gt_file)['ValidationGtBlocksSrgb']
# print(mat.shape)
# img = Image.fromarray(mat[0][1], 'RGB')
# gt = transforms.ToTensor()(img)
# print(gt)