Offical in Attention-Mechanism-Enhanced-KPN
The unofficial implementation of AME-KPNs in PyTorch, and paper is accepted by ICASSP 2020 (oral), it is available at http://arxiv.org/abs/1910.08313.
Use SIDD dataset to train.
Have two folder : noisy image and ground true image
Input folder have struct :
/
/noise
/[scene_instance]
/[image].PNG
/gt
/[scene_instance]
/[image].PNG
This repo. supports training on multiple GPUs.
Train
CUDA_VISIBLE_DEVICES=0,1 python train_eval_syn.py --noise_dir ../image/noise/ --gt_dir ../image/gt/ --image_size 512 --batch_size 1 --save_every 100 --loss_every 10 -nw 4 -c -m -ckpt att_kpn --model_type attKPN --restart```
If no --restart
, the train process would be resumed.
Train Deep Guide Filter
CUDA_VISIBLE_DEVICES=0,1 python train_eval_syn_DGF.py --noise_dir ../image/noise/ --gt_dir ../image/gt/ --image_size 512 --batch_size 1 --burst_length 16 --save_every 100 --loss_every 10 -nw 4 -c -m -ckpt att_kpn --model_type attKPN --restart```
Eval
CUDA_VISIBLE_DEVICES=0,1 python test.py --noise_dir ../image/noise/ --gt_dir ../image/gt/ --image_size 512 -nw 4 -c -m -ckpt att_kpn --model_type attKPN```
Eval with custome data : data have two folder image : noise and gt.
Image will save in folder -s after predicted.
CUDA_VISIBLE_DEVICES=1 python test_custom_DGF.py -n ../FullTest/noisy/ -g ../FullTest/clean/ -b 4 -c -ckpt att_kpn_dgf_4_new -m attKPN -s img/att_kpn_dgf_4_new
- Support KPN (Kernel Prediction Networks), MKPN (Multi-Kernel Prediction Networks)
- The current version supports training on color images.
- Add Deep Guide Filter
- Add noise estimate model to end-to-end denoising model
- Add KPN_Wave : replace polling layer by Wavelet pooling, Upsampling by inverse wavelet pooling. (Att_KPN_Wavelet_DGF)
- Add NonKPN model
- Add synthetic data loader
*_custom : load image from unstruct folder, print or save image for report
*_split : load one image and split image into burst image.
*_DGF : model with Deep Guide Filter
*_noise : model with noise estimate
pip install -r requirments.txt
https://github.com/z-bingo/Attention-Mechanism-Enhanced-KPN
@article{zhang2019attention,
title={Attention Mechanism Enhanced Kernel Prediction Networks for Denoising of Burst Images},
author={Bin Zhang and Shenyao Jin and Yili Xia and Yongming Huang and Zixiang Xiong},
year={2019},
journal={arXiv preprint arXiv:1910.08313}
}