-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_KPN_highwave.py
227 lines (208 loc) · 9.1 KB
/
train_KPN_highwave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
import argparse
import time
import shutil
from tensorboardX import SummaryWriter
from torchvision.transforms import transforms
# import setproctitle
from utils.training_util import MovingAverage, save_checkpoint, load_checkpoint
from utils.training_util import calculate_psnr, calculate_ssim
from utils.data_provider_DGF import *
from utils.loss import LossBasic,WaveletLoss,tv_loss,CharbonnierLoss
from model.KPN_highwave import Att_KPN_Wavelet_highwave
def train(num_workers, cuda, restart_train, mGPU):
# torch.set_num_threads(num_threads)
color = True
batch_size = args.batch_size
lr = 2e-4
lr_decay = 0.89125093813
n_epoch = args.epoch
# num_workers = 8
save_freq = args.save_every
loss_freq = args.loss_every
lr_step_size = 100
burst_length = args.burst_length
# checkpoint path
checkpoint_dir = "checkpoints/" + args.checkpoint
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# logs path
logs_dir = "checkpoints/logs/" + args.checkpoint
if not os.path.exists(logs_dir):
os.makedirs(logs_dir)
shutil.rmtree(logs_dir)
log_writer = SummaryWriter(logs_dir)
# dataset and dataloader
data_set = SingleLoader_DGF(noise_dir=args.noise_dir,gt_dir=args.gt_dir,image_size=args.image_size,burst_length=burst_length)
data_loader = DataLoader(
data_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers
)
# model here
if args.model_type == "attNonKPN_Wave":
model = Att_KPN_Wavelet_highwave(
color=color,
burst_length=burst_length,
channel_att=True,
spatial_att=True,
upMode="bilinear",
core_bias=False,
)
else:
print(" Model type not valid")
return
if cuda:
model = model.cuda()
if mGPU:
model = nn.DataParallel(model)
model.train()
loss_func = LossBasic()
loss_func2 = CharbonnierLoss()
# if args.wavelet_loss:
# print("Use wavelet loss")
# loss_func2 = WaveletLoss()
# Optimizer here
optimizer = optim.Adam(
model.parameters(),
lr=lr
)
optimizer.zero_grad()
# learning rate scheduler here
scheduler = lr_scheduler.StepLR(optimizer, step_size=lr_step_size, gamma=lr_decay)
average_loss = MovingAverage(save_freq)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not restart_train:
try:
checkpoint = load_checkpoint(checkpoint_dir,cuda=device=='cuda',best_or_latest=args.load_type)
start_epoch = checkpoint['epoch']
global_step = checkpoint['global_iter']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['lr_scheduler'])
print('=> loaded checkpoint (epoch {}, global_step {})'.format(start_epoch, global_step))
except:
start_epoch = 0
global_step = 0
best_loss = np.inf
print('=> no checkpoint file to be loaded.')
else:
start_epoch = 0
global_step = 0
best_loss = np.inf
if os.path.exists(checkpoint_dir):
pass
# files = os.listdir(checkpoint_dir)
# for f in files:
# os.remove(os.path.join(checkpoint_dir, f))
else:
os.mkdir(checkpoint_dir)
print('=> training')
for epoch in range(start_epoch, n_epoch):
epoch_start_time = time.time()
# decay the learning rate
t1 = time.time()
for step, (image_noise_hr,image_noise_lr, image_gt_hr, _) in enumerate(data_loader):
# print(burst_noise.size())
if cuda:
# burst_noise = image_noise_lr.cuda()
gt = image_gt_hr.cuda()
image_noise_hr = image_noise_hr.cuda()
else:
# burst_noise = image_noise_lr
gt = image_gt_hr
pred = model(image_noise_hr)
#
# loss_basic, loss_anneal = loss_func(pred_i, pred, gt, global_step)
loss_basic = loss_func2(pred, gt)
loss = loss_basic
# if args.wavelet_loss:
# loss_wave = loss_func2(pred,gt)
# # print(loss_wave)
# loss = loss_basic + loss_wave
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update the average loss
average_loss.update(loss)
# global_step
if not color:
pred = pred.unsqueeze(1)
gt = gt.unsqueeze(1)
if global_step %loss_freq ==0:
# calculate PSNR
# print("burst_noise : ",burst_noise.size())
# print("gt : ",gt.size())
# print("feedData : ", feedData.size())
psnr = calculate_psnr(pred, gt)
ssim = calculate_ssim(pred, gt)
# add scalars to tensorboardX
log_writer.add_scalar('loss_basic', loss_basic, global_step)
# log_writer.add_scalar('loss_anneal', loss_anneal, global_step)
log_writer.add_scalar('loss_total', loss, global_step)
log_writer.add_scalar('psnr', psnr, global_step)
log_writer.add_scalar('ssim', ssim, global_step)
# print
print('{:-4d}\t| epoch {:2d}\t| step {:4d}\t| loss_basic: {:.4f}\t|'
' loss: {:.4f}\t| PSNR: {:.2f}dB\t| SSIM: {:.4f}\t| time:{:.2f} seconds.'
.format(global_step, epoch, step, loss_basic, loss, psnr, ssim, time.time()-t1))
t1 = time.time()
if global_step % save_freq == 0:
if average_loss.get_value() < best_loss:
is_best = True
best_loss = average_loss.get_value()
else:
is_best = False
save_dict = {
'epoch': epoch,
'global_iter': global_step,
'state_dict': model.state_dict(),
'best_loss': best_loss,
'optimizer': optimizer.state_dict(),
'lr_scheduler': scheduler.state_dict()
}
save_checkpoint(
save_dict, is_best, checkpoint_dir, global_step, max_keep=10
)
print('Save : {:-4d}\t| epoch {:2d}\t| step {:4d}\t| loss_basic: {:.4f}\t|'
' loss: {:.4f}'
.format(global_step, epoch, step, loss_basic, loss))
global_step += 1
print('Epoch {} is finished, time elapsed {:.2f} seconds.'.format(epoch, time.time()-epoch_start_time))
lr_cur = [param['lr'] for param in optimizer.param_groups]
if lr_cur[0] > 5e-6:
scheduler.step()
else:
for param in optimizer.param_groups:
param['lr'] = 5e-6
if __name__ == '__main__':
# argparse
parser = argparse.ArgumentParser(description='parameters for training')
parser.add_argument('--noise_dir','-n', default='/home/dell/Downloads/noise', help='path to noise folder image')
parser.add_argument('--gt_dir', '-g' , default='/home/dell/Downloads/gt', help='path to gt folder image')
parser.add_argument('--image_size', '-sz' , default=128, type=int, help='size of image')
parser.add_argument('--epoch', '-e' ,default=1000, type=int, help='batch size')
parser.add_argument('--batch_size','-bs' , default=2, type=int, help='batch size')
parser.add_argument('--burst_length', '-b', default=1, type=int, help='batch size')
parser.add_argument('--save_every','-se' , default=200, type=int, help='save_every')
parser.add_argument('--loss_every', '-le' , default=10, type=int, help='loss_every')
parser.add_argument('--restart','-r' , action='store_true', help='Whether to remove all old files and restart the training process')
parser.add_argument('--num_workers', '-nw', default=2, type=int, help='number of workers in data loader')
parser.add_argument('--cuda', '-c', action='store_true', help='whether to train on the GPU')
parser.add_argument('--mGPU', '-mg', action='store_true', help='whether to train on multiple GPUs')
parser.add_argument('--checkpoint', '-ckpt', type=str, default='attnonkpn_highwave',
help='the checkpoint to eval')
parser.add_argument('--color','-cl' , default=True, action='store_true')
parser.add_argument('--model_type','-m' ,default="attNonKPN_Wave", help='type of model : attNonKPN_Wave')
parser.add_argument('--load_type', "-l" ,default="best", type=str, help='Load type best_or_latest ')
parser.add_argument('--wavelet_loss','-wl' , default=False, action='store_true')
args = parser.parse_args()
#
train(args.num_workers,args.cuda, args.restart, args.mGPU)