Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor(rust): Minor new-streaming test fixes #18891

Merged
merged 2 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion crates/polars-python/src/series/buffers.rs
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ where
}
fn series_to_bitmap(s: Series) -> PyResult<Bitmap> {
let ca_result = s.bool();
let ca = ca_result.map_err(PyPolarsErr::from)?;
let ca = ca_result.map_err(PyPolarsErr::from)?.rechunk();
let arr = ca.downcast_iter().next().unwrap();
let bitmap = arr.values().clone();
Ok(bitmap)
Expand Down
206 changes: 104 additions & 102 deletions py-polars/tests/unit/functions/as_datatype/test_struct.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,111 +62,113 @@ def test_eager_struct() -> None:


def test_struct_from_schema_only() -> None:
# we create a dataframe with default types
df = pl.DataFrame(
{
"str": ["a", "b", "c", "d", "e"],
"u8": [1, 2, 3, 4, 5],
"i32": [1, 2, 3, 4, 5],
"f64": [1, 2, 3, 4, 5],
"cat": ["a", "b", "c", "d", "e"],
"datetime": pl.Series(
[
date(2023, 1, 1),
date(2023, 1, 2),
date(2023, 1, 3),
date(2023, 1, 4),
date(2023, 1, 5),
]
),
"bool": [1, 0, 1, 1, 0],
"list[u8]": [[1], [2], [3], [4], [5]],
}
)

# specify a schema with specific dtypes
s = df.select(
pl.struct(
schema={
"str": pl.String,
"u8": pl.UInt8,
"i32": pl.Int32,
"f64": pl.Float64,
"cat": pl.Categorical,
"datetime": pl.Datetime("ms"),
"bool": pl.Boolean,
"list[u8]": pl.List(pl.UInt8),
# Workaround for new streaming engine.
with pl.StringCache():
# we create a dataframe with default types
df = pl.DataFrame(
{
"str": ["a", "b", "c", "d", "e"],
"u8": [1, 2, 3, 4, 5],
"i32": [1, 2, 3, 4, 5],
"f64": [1, 2, 3, 4, 5],
"cat": ["a", "b", "c", "d", "e"],
"datetime": pl.Series(
[
date(2023, 1, 1),
date(2023, 1, 2),
date(2023, 1, 3),
date(2023, 1, 4),
date(2023, 1, 5),
]
),
"bool": [1, 0, 1, 1, 0],
"list[u8]": [[1], [2], [3], [4], [5]],
}
).alias("s")
)["s"]
)

# check dtypes
assert s.dtype == pl.Struct(
[
pl.Field("str", pl.String),
pl.Field("u8", pl.UInt8),
pl.Field("i32", pl.Int32),
pl.Field("f64", pl.Float64),
pl.Field("cat", pl.Categorical),
pl.Field("datetime", pl.Datetime("ms")),
pl.Field("bool", pl.Boolean),
pl.Field("list[u8]", pl.List(pl.UInt8)),
]
)
# specify a schema with specific dtypes
s = df.select(
pl.struct(
schema={
"str": pl.String,
"u8": pl.UInt8,
"i32": pl.Int32,
"f64": pl.Float64,
"cat": pl.Categorical,
"datetime": pl.Datetime("ms"),
"bool": pl.Boolean,
"list[u8]": pl.List(pl.UInt8),
}
).alias("s")
)["s"]

# check dtypes
assert s.dtype == pl.Struct(
[
pl.Field("str", pl.String),
pl.Field("u8", pl.UInt8),
pl.Field("i32", pl.Int32),
pl.Field("f64", pl.Float64),
pl.Field("cat", pl.Categorical),
pl.Field("datetime", pl.Datetime("ms")),
pl.Field("bool", pl.Boolean),
pl.Field("list[u8]", pl.List(pl.UInt8)),
]
)

# check values
assert s.to_list() == [
{
"str": "a",
"u8": 1,
"i32": 1,
"f64": 1.0,
"cat": "a",
"datetime": datetime(2023, 1, 1, 0, 0),
"bool": True,
"list[u8]": [1],
},
{
"str": "b",
"u8": 2,
"i32": 2,
"f64": 2.0,
"cat": "b",
"datetime": datetime(2023, 1, 2, 0, 0),
"bool": False,
"list[u8]": [2],
},
{
"str": "c",
"u8": 3,
"i32": 3,
"f64": 3.0,
"cat": "c",
"datetime": datetime(2023, 1, 3, 0, 0),
"bool": True,
"list[u8]": [3],
},
{
"str": "d",
"u8": 4,
"i32": 4,
"f64": 4.0,
"cat": "d",
"datetime": datetime(2023, 1, 4, 0, 0),
"bool": True,
"list[u8]": [4],
},
{
"str": "e",
"u8": 5,
"i32": 5,
"f64": 5.0,
"cat": "e",
"datetime": datetime(2023, 1, 5, 0, 0),
"bool": False,
"list[u8]": [5],
},
]
# check values
assert s.to_list() == [
{
"str": "a",
"u8": 1,
"i32": 1,
"f64": 1.0,
"cat": "a",
"datetime": datetime(2023, 1, 1, 0, 0),
"bool": True,
"list[u8]": [1],
},
{
"str": "b",
"u8": 2,
"i32": 2,
"f64": 2.0,
"cat": "b",
"datetime": datetime(2023, 1, 2, 0, 0),
"bool": False,
"list[u8]": [2],
},
{
"str": "c",
"u8": 3,
"i32": 3,
"f64": 3.0,
"cat": "c",
"datetime": datetime(2023, 1, 3, 0, 0),
"bool": True,
"list[u8]": [3],
},
{
"str": "d",
"u8": 4,
"i32": 4,
"f64": 4.0,
"cat": "d",
"datetime": datetime(2023, 1, 4, 0, 0),
"bool": True,
"list[u8]": [4],
},
{
"str": "e",
"u8": 5,
"i32": 5,
"f64": 5.0,
"cat": "e",
"datetime": datetime(2023, 1, 5, 0, 0),
"bool": False,
"list[u8]": [5],
},
]


def test_struct_broadcasting() -> None:
Expand Down
2 changes: 2 additions & 0 deletions py-polars/tests/unit/interop/numpy/test_to_numpy_df.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ def assert_zero_copy(s: pl.Series, arr: np.ndarray[Any, Any]) -> None:
allow_chunks=False,
)
)
@pytest.mark.may_fail_auto_streaming
def test_df_to_numpy_zero_copy(s: pl.Series) -> None:
df = pl.DataFrame({"a": s[:3], "b": s[3:]})

Expand Down Expand Up @@ -153,6 +154,7 @@ def test_df_to_numpy_zero_copy_path() -> None:
assert str(x[0, :]) == "[1. 2. 1. 1. 1.]"


@pytest.mark.may_fail_auto_streaming
def test_df_to_numpy_zero_copy_path_temporal() -> None:
values = [datetime(1970 + i, 1, 1) for i in range(12)]
s = pl.Series(values)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ def test_series_to_numpy_temporal_zero_copy(

def test_series_to_numpy_datetime_with_tz_zero_copy() -> None:
values = [datetime(1970, 1, 1), datetime(2024, 2, 28)]
s = pl.Series(values).dt.convert_time_zone("Europe/Amsterdam")
s = pl.Series(values).dt.convert_time_zone("Europe/Amsterdam").rechunk()
result = s.to_numpy(allow_copy=False)

assert_zero_copy(s, result)
Expand Down
4 changes: 0 additions & 4 deletions py-polars/tests/unit/interop/numpy/test_ufunc_expr.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,11 @@ def test_ufunc_expr_not_first() -> None:
out = df.select(
np.power(2.0, cast(Any, pl.col("a"))).alias("power"),
(2.0 / cast(Any, pl.col("a"))).alias("divide_scalar"),
(np.array([2, 2, 2]) / cast(Any, pl.col("a"))).alias("divide_array"),
)
expected = pl.DataFrame(
[
pl.Series("power", [2**1, 2**2, 2**3], dtype=pl.Float64),
pl.Series("divide_scalar", [2 / 1, 2 / 2, 2 / 3], dtype=pl.Float64),
pl.Series("divide_array", [2 / 1, 2 / 2, 2 / 3], dtype=pl.Float64),
]
)
assert_frame_equal(out, expected)
Expand Down Expand Up @@ -68,13 +66,11 @@ def test_lazy_ufunc_expr_not_first() -> None:
out = ldf.select(
np.power(2.0, cast(Any, pl.col("a"))).alias("power"),
(2.0 / cast(Any, pl.col("a"))).alias("divide_scalar"),
(np.array([2, 2, 2]) / cast(Any, pl.col("a"))).alias("divide_array"),
)
expected = pl.DataFrame(
[
pl.Series("power", [2**1, 2**2, 2**3], dtype=pl.Float64),
pl.Series("divide_scalar", [2 / 1, 2 / 2, 2 / 3], dtype=pl.Float64),
pl.Series("divide_array", [2 / 1, 2 / 2, 2 / 3], dtype=pl.Float64),
]
)
assert_frame_equal(out.collect(), expected)
Expand Down
Loading