Skip to content

Commit

Permalink
Triton Partition K gemm to TritonBench
Browse files Browse the repository at this point in the history
Summary: This an early exploration. Triton Partition K ([link](https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md#parallelized-reductions)) used two kernels (gemm + reduce) to achieve the goal of splitK. Comparing with the `atomic_add` Triton GEMM, the partitionK is more friendly to epilogue fusion

Reviewed By: bertmaher, chenyang78

Differential Revision: D59948589

fbshipit-source-id: a2118947f8e20ab17d26843fd263b83e22f58541
  • Loading branch information
sijiac authored and facebook-github-bot committed Jul 22, 2024
1 parent 43d8a99 commit 53d98e3
Show file tree
Hide file tree
Showing 2 changed files with 266 additions and 4 deletions.
15 changes: 11 additions & 4 deletions torchbenchmark/operators/gemm/operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from .triton_matmul import matmul as triton_tutorial_matmul
from .triton_matmul import matmul_kernel as triton_tutorial_matmul_kernel
from .persistent_matmul import matmul_persistent, matmul_tma_persistent, matmul_tma_persistent_cached

from .partition_k import matmul_partition_k
import torch._inductor.config as inductor_config

if inductor_config.is_fbcode():
Expand Down Expand Up @@ -74,12 +74,12 @@

SPLIT_K_SHAPES = [
(m, m, k, None)
for m in [128 * i for i in range(1, 5)]
for k in [2048 * i for i in range(1, 9)]
for m in [16 * i for i in range(1, 5)]
for k in [4096 * i for i in range(1, 9)]
]

class Operator(BenchmarkOperator):
DEFAULT_METRICS = ["latency", "speedup", "accuracy", "tflops", "best_config"]
DEFAULT_METRICS = ["speedup", "tflops"]
DEFAULT_PRECISION = "fp16"

def __init__(self, tb_args: argparse.Namespace, extra_args: Optional[List[str]] = None):
Expand All @@ -106,6 +106,13 @@ def triton_tutorial_matmul(self, a, b, bias) -> Callable:
else:
return lambda: triton_tutorial_matmul(a, b)

@register_benchmark()
def matmul_partition_k(self, a, b, bias) -> Callable:
if not bias == None:
return lambda: matmul_partition_k(a, b) + bias
else:
return lambda: matmul_partition_k(a, b)

@register_benchmark()
def triton_persistent_matmul(self, a, b, bias) -> Callable:
if not bias == None:
Expand Down
255 changes: 255 additions & 0 deletions torchbenchmark/operators/gemm/partition_k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
import torch

import triton
import triton.language as tl


@triton.autotune(
configs=[
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
},
num_stages=4,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
},
num_stages=5,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
},
num_stages=6,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
},
num_stages=4,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
},
num_stages=5,
num_warps=2,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
},
num_stages=6,
num_warps=2,
),
],
key=["M", "N", "K", "PK"],
)
@triton.jit
def _matmul_partition_k(
# Pointers to matrices
a_ptr,
b_ptr,
c_buf_ptr,
# Matrix dimensions
M,
N,
K,
PK,
PK_SIZE,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
# by to get the element one row down (A has M rows).
stride_am,
stride_ak, #
stride_bk,
stride_bn, #
stride_cb_m,
stride_cb_n,
stride_cb_k,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr, #
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
# See above `L2 Cache Optimizations` section for details.
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
pid_pk = tl.program_id(axis=2)
# num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
# num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
# num_pid_pk = PK
# num_pid_nk = num_pid_n * num_pid_pk
# num_pid_in_group = GROUP_SIZE_M * num_pid_nk
# group_id = pid // num_pid_in_group
# first_pid_m = group_id * GROUP_SIZE_M
# group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
# pid_m = first_pid_m + (pid % group_size_m)
# pid_nk = (pid % num_pid_in_group) // group_size_m
# pid_n = pid_nk // num_pid_n
# pid_pk = pid_nk % num_pid_n

# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
# See above `Pointer Arithmetic` section for details
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = (pid_pk * PK_SIZE + tl.arange(0, BLOCK_SIZE_K)) % K
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)

# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(PK_SIZE, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the K dimension.
# If it is out of bounds, set it to 0.
# a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
# b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
acc = accumulator.to(tl.float16)

offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_ck = pid_pk
c_buf_ptrs = (
c_buf_ptr
+ stride_cb_m * offs_cm[:, None, None]
+ stride_cb_n * offs_cn[None, :, None]
+ stride_cb_k * offs_ck[None, None, :]
)
tl.store(c_buf_ptrs, acc[:, :, None])


@triton.jit
def _reduce(
c_ptr,
c_buf_ptr,
M,
N,
stride_cm,
stride_cn,
stride_cb_m,
stride_cb_n,
stride_cb_k,
PK: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
):
pid = tl.program_id(0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_m
pid_n = pid % num_pid_n

offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, PK)
c_buf_ptrs = c_buf_ptr + (
offs_m[:, None, None] * stride_cb_m
+ offs_n[None, :, None] * stride_cb_n
+ offs_k[None, None, :] * stride_cb_k
)
c_buf = tl.load(c_buf_ptrs)
reduced_k = tl.sum(c_buf, axis=2)

c_ptrs = c_ptr + (offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn)
tl.store(c_ptrs, reduced_k)

def matmul_partition_k(a, b, triton_reduce=False):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.is_contiguous(), "Matrix A must be contiguous"
assert b.is_contiguous(), "Matrix B must be contiguous"

partitionK = 64

M, K = a.shape
K, N = b.shape
# Allocates output.
partitionK_SIZE = K // partitionK

c_buf = torch.empty((M, N, partitionK), device=a.device, dtype=a.dtype)
c = torch.empty((M, N), device=a.device, dtype=a.dtype)
# 1D launch kernel where each block gets its own program.

grid = lambda META: (
triton.cdiv(M, META["BLOCK_SIZE_M"]),
triton.cdiv(N, META["BLOCK_SIZE_N"]),
partitionK,
)
_matmul_partition_k[grid](
a,
b,
c_buf, #
M,
N,
K, #
partitionK,
partitionK_SIZE, #
a.stride(0),
a.stride(1), #
b.stride(0),
b.stride(1), #
c_buf.stride(0), #
c_buf.stride(1),
c_buf.stride(2),
)
if triton_reduce:
BLOCK_M = 32
BLOCK_N = 32

grid_reduce = lambda META: (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N),)

_reduce[grid_reduce](
c,
c_buf,
M,
N,
c.stride(0),
c.stride(1),
c_buf.stride(0),
c_buf.stride(1),
c_buf.stride(2),
partitionK,
BLOCK_M,
BLOCK_N,
)
return c
else:
return c_buf.sum(dim=2)

0 comments on commit 53d98e3

Please sign in to comment.