This repository hosts scripts and tools for processing and managing high-resolution 7T MRI data as part of the MPN initiative. The aim is to facilitate open data sharing and streamline quality control (QC) and preprocessing using an integrated pipeline that connects LORIS, CBRAIN, and micapipe, following BIDS standards.
File | Description |
---|---|
README |
Detailed documentation on the project's goals, setup instructions, and usage guidelines. |
LICENSE |
Information on the repository's licensing terms for open-source distribution. |
Dockerfile |
Configuration to containerize the pipeline for reproducibility and easy deployment. |
Functions |
Directory with the functions. |
The data processing workflow begins by transferring raw MRI data, in both BIDS and MINC format, to the LORIS
platform. Once uploaded, initial quality control (QC) annotations are performed on LORIS
using both automated tools and human evaluations. The data is then linked to CBRAIN
, where automated QC metrics are extracted for further analysis. Following this, the QC reports on LORIS
are reviewed and classified as either "pass" or "fail." Once the data is approved, it is transferred back to LORIS for preprocessing with micapipe
. micapipe
then generates initial derivatives while applying additional QC measures to ensure the integrity of the data throughout the entire pipeline.
- Organizes raw DICOM into a temporary structurated directories
- Transforms the sorted dicoms into BIDS
- Run BIDS validator through
deno
dcm2bids.py --dicoms_dir MPN00001_sorted/ --bids_dir /BIDS_MPN/rawdata --sub MPN00001 --ses v1
dcm2bids.py --dicoms_dir MPN00001_sorted/ --sorted_dir MPN00001_sorted/ --bids_dir /BIDS_MPN/rawdata --sub MPN00001 --ses v1
deno run --allow-write -ERN jsr:@bids/validator {bids_dir} --ignoreWarnings --outfile {bids_dir}/bids_validator_output.txt
mpn_micapipe.sh <subject> <session> <path to singularity image>
N | 7T Terra Siemens acquisition | BIDS | Directory |
---|---|---|---|
1 | anat-T1w_acq_mprage_0.8mm_CSptx | T1w | anat |
2 | anat-T1w_acq-mp2rage_0.7mm_CSptx_INV1 | inv-1_MP2RAGE | anat |
3 | anat-T1w_acq-mp2rage_0.7mm_CSptx_INV2 | inv-2_MP2RAGE | anat |
4 | anat-T1w_acq-mp2rage_0.7mm_CSptx_T1_Images | T1map | anat |
5 | anat-T1w_acq-mp2rage_0.7mm_CSptx_UNI_Images | UNIT1 | anat |
6 | anat-T1w_acq-mp2rage_0.7mm_CSptx_UNI-DEN | desc-denoised_UNIT1 | anat |
7 | anat-flair_acq-0p7iso_UPAdia | FLAIR | anat |
8 | CLEAR-SWI_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-SWI_T2starw | anat |
9 | Romeo_P_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-romeo_T2starw | anat |
10 | Romeo_Mask_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-romeo_desc-mask_T2starw | anat |
11 | Romeo_B0_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-romeo_desc-unwrapped_T2starw | anat |
12 | Aspire_M_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-aspire_part-mag_T2starw | anat |
13 | Aspire_P_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-aspire_part-phase_T2starw | anat |
14 | EchoCombined_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-aspire_desc-echoCombined_T2starw | anat |
15 | sensitivity_corrected_mag_anat-T2star_acq-me_gre_0*7iso_ASPIRE | acq-aspire_desc-echoCombinedSensitivityCorrected_T2starw | anat |
16 | T2star_anat-T2star_acq-me_gre_0*7iso_ASPIRE | T2starw | anat |
17 | anat-mtw_acq-MTON_07mm | acq-mtw_mt-on_MTR | anat |
18 | anat-mtw_acq-MTOFF_07mm | acq-mtw_mt-off_MTR | anat |
19 | anat-mtw_acq-T1w_07mm | acq-mtw_T1w | anat |
20 | anat-nm_acq-MTboost_sag_0.55mm | acq-neuromelaninMTw_T1w | anat |
21 | anat-angio_acq-tof_03mm_inplane | angio | anat |
22 | anat-angio_acq-tof_03mm_inplane_MIP_SAG | acq-sag_angio | anat |
23 | anat-angio_acq-tof_03mm_inplane_MIP_COR | acq-cor_angio | anat |
24 | anat-angio_acq-tof_03mm_inplane_MIP_TRA | acq-tra_angio | anat |
The acquisitions
acq-romeo_part-phase_T2starw
,acq-aspire_part-mag_T2starw
, andacq-aspire_part-phase_T2starw
each have five echoes. The final string will include the identifierecho-
followed by the echo number. For example:acq-aspire_echo-1_part-mag_T2starw
.
N | 7T Terra Siemens acquisition | BIDS | Directory |
---|---|---|---|
1 | fmap-b1_tra_p2 | acq-[anat|sfam]_TB1TFL | fmap |
2 | fmap-b1_acq-sag_p2 | acq-[anat|sfam]_TB1TFL | fmap |
3 | fmap-fmri_acq-mbep2d_SE_19mm_dir-AP | acq-fmri_dir-AP_epi | fmap |
4 | fmap-fmri_acq-mbep2d_SE_19mm_dir-PA | acq-fmri_dir-PA_epi | fmap |
N | 7T Terra Siemens acquisition | BIDS | Directory |
---|---|---|---|
1 | func-cross_acq-ep2d_MJC_19mm | task-rest_bold | func |
2 | func-cloudy_acq-ep2d_MJC_19mm | task-cloudy_bold | func |
3 | func-present_acq-mbep2d_ME_19mm | task-present_bold | func |
Each functional MRI acquisition includes three echoes and a phase. The final string will contain the identifier
echo-
followed by the echo number (e.g.,task-rest_echo-1_bold
). Additionally, the stringpart-phase
will be included to identify the phase (e.g.,task-rest_echo-1_part-phase_bold
).
N | 7T Terra Siemens acquisition | BIDS | Directory |
---|---|---|---|
1 | *dwi_acq_b0_PA | acq-b0_dir-PA_dwi | dwi |
2 | *dwi_acq_b0_PA_SBRef | acq-b0_dir-PA_sbref | dwi |
3 | *dwi_acq_multib_38dir_AP_acc9 | acq-multib38_dir-AP_dwi | dwi |
4 | *dwi_acq_multib_38dir_AP_acc9_SBRef | acq-multib38_dir-AP_sbref | dwi |
5 | *dwi_acq_multib_70dir_AP_acc9 | acq-multib70_dir-AP_dwi | dwi |
6 | *dwi_acq_multib_70dir_AP_acc9_SBRef | acq-multib70_dir-AP_sbref | dwi |
The string
part-phase
will be included to identify the phase acquisitions (e.g.,acq-multib38_dir-AP_part-phase_dwi
).
Abbreviation | Description |
---|---|
AP | Anterio-Posterior |
PA | Postero-anterior |
mtw | Magnetic transfer weighted |
sfmap | Scaled flip angle map |
tof | Time of flight |
multib | Multi shell N directions |
semphon | Semantic-phonetic |
romeo | Rapid opensource minimum spanning tree algorithm |
aspire | Combination of multi-channel phase data from multi-echo acquisitions |
-
Eckstein K, Dymerska B, Bachrata B, Bogner W, Poljanc K, Trattnig S, Robinson SD. Computationally efficient combination of multi‐channel phase data from multi‐echo acquisitions (ASPIRE). Magnetic resonance in medicine. 2018 Jun;79(6):2996-3006. https://doi.org/10.1002/mrm.26963
-
Dymerska B, Eckstein K, Bachrata B, Siow B, Trattnig S, Shmueli K, Robinson SD. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic resonance in medicine. 2021 Apr;85(4):2294-308. https://doi.org/10.1002/mrm.28563
-
Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport. 2006 Jul 31;17(11):1215-8. https://doi.org/10.1097/01.wnr.0000227984.84927.a7
Package | Version |
---|---|
python | 3.8 |
dcm2niix | 1.0.20240202 |
jq | 1.6 |
bids_validator | 2.0.0 |
deno | 2.0.6 |
# Define directories
bids=/BIDS_MPN/rawdata/
dicoms=/BIDS_MPN/dicoms
# Path to singularity image
img=<path_to_image>/dcm2bids_v0.1.2.sif
# Define subject and session
sub=MPNphantom
ses=v1
# Call singularity
singularity run --writable-tmpfs --containall \
-B ${bids}:/bids -B ${dicoms}:/dicoms \
${img} --sub $sub --ses $ses --dicoms_dir /dicoms --sorted_dir /dicoms --bids_dir /bids