Skip to content

renatopanda/MLmetrics

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLmetrics

CRAN_Status_Badge CRAN Downloads CRAN Downloads Total Linux/Mac: Build Status Windows: AppVeyor Build Status

Machine Learning Evaluation Metrics

A collection of evaluation metrics, including loss, score and utility functions, that measure regression, classification and ranking performance.

  • Regression:
    Mean Squared Error
    Root Mean Squared Error
    Root Mean Squared Logarithmic Error
    Root Mean Square Percentage Error
    Root Relative Squared Error
    Mean Absolute Error
    Mean Absolute Percentage Error
    Median Absolute Error
    Median Absolute Percentage Error
    Relative Absolute Error
    R-Squared (Coefficient of Determination) Regression Score
    Poisson LogLoss
    Normalized Gini Coefficient
  • Classification:
    Confusion Matrix
    Zero-One Loss
    Accuracy
    Precision
    Precision (micro averaged)
    Precision (macro averaged)
    Recall
    Recall (micro averaged)
    Recall (macro averaged)
    Sensitivity
    Specificity
    F1 Score
    F1 Score (micro averaged)
    F1 Score (macro averaged)
    F-Beta Score
    Log loss / Cross-Entropy Loss
    Multi Class Log Loss
    AUC
    Gini
    PRAUC
    LiftAUC
    GainAUC
    Kolmogorov-Smirnov Statistic

To install:

  • the stable version from CRAN:
install.packages("MLmetrics")
  • the latest development version:
devtools::install_github("yanyachen/MLmetrics")

About

Machine Learning Evaluation Metrics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%