-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
133 lines (93 loc) · 3.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# celebrity face recognition
from flask import Flask, render_template
from flask import jsonify
from flask import request
from keras.models import model_from_json
import cv2
from model import create_model
from Align import AlignDlib
import dlib
import pickle
from PIL import Image
import base64
import io
import keras
import numpy as np
import tensorflow as tf
import os
import pandas as pd
from sklearn import preprocessing
app = Flask(__name__)
def get_model():
global model
json_file = open('saved/sequential_NN_629_model_output_53dim.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights("saved/sequential_NN_629_model_ouput_53dim.h5")
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
print("Loaded NN model from disk")
def get_openface_model():
global open_face_model
open_face_model = create_model()
open_face_model.load_weights('open_face.h5')
global graph
graph = tf.get_default_graph()
print('Loaded openface model')
def load_image(path):
img = cv2.imread(path, 1)
return img[...,::-1]
def load_names_label_encoder():
global names_encode
names_encode = preprocessing.LabelEncoder()
names_encode.classes_ = np.load('saved/names_encode.npy')
def predict_results(encoded_image):
decoded = base64.b64decode(encoded_image)
with open("save_image.jpg", 'wb') as f:
f.write(decoded)
image = load_image("save_image.jpg")
faces = alignment.getAllFaceBoundingBoxes(image)
response=[]
for i in range(len(faces)):
face_aligned = alignment.align(96, image, faces[i], landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE)
face_aligned = (face_aligned / 255.).astype(np.float32)
with graph.as_default():
embedding = open_face_model.predict(np.expand_dims(face_aligned, axis=0))[0]
with graph.as_default():
pred = model.predict([[embedding]])
ind = np.argsort(pred[0])
print(ind[::-1][:5])
prediction=[]
prediction.append(str(names_encode.inverse_transform([ind[::-1][0]])[0]))
prediction.append(str(pred[0][ind[::-1][0]]*100))
response.append({ 'name':prediction[0], 'probability':prediction[1] })
print(response)
return jsonify(response)
def update_new_user(encoded_image,name):
decoded = base64.b64decode(encoded_image)
num_of_images=0
if(os.path.isdir("output/"+name)):
num_of_images = len(os.listdir("output/"+name))
else:
os.makedirs("output/"+name)
name_of_file = name+"_"+(str(num_of_images+1))
with open("output/"+name+"/"+name_of_file+".jpg", 'wb') as f:
f.write(decoded)
get_model()
get_openface_model()
load_names_label_encoder()
alignment = AlignDlib('models/landmarks.dat')
print("Done !")
@app.route("/predict",methods=["POST"])
def predict():
msg = request.get_json(force=True)
encoded_image = msg['image']
return(predict_results(encoded_image))
@app.route("/update",methods=["POST"])
def update():
msg = request.get_json(force=True)
encoded_image = msg['image']
name = msg['name']
print("New updated image of "+name)
update_new_user(encoded_image,name)
return ("RESULT UPDATED")