-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add MLP Mixer on architectures (#17)
* Add MLP Mixer on architectures * Add MLP Mixer on architectures * cleaning dirty output --------- Co-authored-by: Guillermo Pinto Ruiz <camachopinto_@hotmail.com>
- Loading branch information
1 parent
2e0366f
commit 0f24840
Showing
2 changed files
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[](https://github.com/semilleroCV/deep-learning-notes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## MLP Mixer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%%capture\n", | ||
"#@title **Install required packages**\n", | ||
"\n", | ||
"! pip install torchinfo einops" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#@title **Importing libraries**\n", | ||
"\n", | ||
"import torch #2.3.1+cu121\n", | ||
"import torch.nn as nn \n", | ||
"import torchinfo #1.8.0\n", | ||
"\n", | ||
"import einops #0.8.0\n", | ||
"from einops.layers.torch import Rearrange" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch version: 2.3.1+cu121\n", | ||
"torchinfo version: 1.8.0\n", | ||
"einops version: 0.8.0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Note: Not all dependencies have the __version__ method.\n", | ||
"\n", | ||
"print(f\"torch version: {torch.__version__}\")\n", | ||
"print(f\"torchinfo version: {torchinfo.__version__}\")\n", | ||
"print(f\"einops version: {einops.__version__}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### MLP-Mixer architecture code\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class PatchEmbedding(nn.Module):\n", | ||
" def __init__(self, in_channels: int, patch_size: int, embed_dim: int):\n", | ||
" super().__init__()\n", | ||
"\n", | ||
" self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)\n", | ||
" self.rearrange = Rearrange('b e h w -> b (h w) e')\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" _, _, H, W = x.size()\n", | ||
"\n", | ||
" x = self.proj(x)\n", | ||
" x = self.rearrange(x)\n", | ||
"\n", | ||
" return x\n", | ||
"\n", | ||
"\n", | ||
"class MLPBlock(nn.Module):\n", | ||
" def __init__(self, input_dim: int, hidden_dim: int):\n", | ||
" super().__init__()\n", | ||
"\n", | ||
" self.mlp_blk = nn.Sequential(\n", | ||
" nn.Linear(input_dim, hidden_dim),\n", | ||
" nn.GELU(),\n", | ||
" nn.Linear(hidden_dim, input_dim),\n", | ||
" )\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return self.mlp_blk(x)\n", | ||
"\n", | ||
"\n", | ||
"class MixerBlock(nn.Module):\n", | ||
" def __init__(self, dim: int, pix_per_patch: int, token_dim: int, channel_dim: int):\n", | ||
" super().__init__()\n", | ||
"\n", | ||
" self.token_mixer = nn.Sequential(\n", | ||
" nn.LayerNorm(dim),\n", | ||
" Rearrange('b n c -> b c n'),\n", | ||
" MLPBlock(pix_per_patch, token_dim),\n", | ||
" Rearrange('b c n -> b n c'),\n", | ||
" )\n", | ||
"\n", | ||
" self.channel_mixer = nn.Sequential(\n", | ||
" nn.LayerNorm(dim),\n", | ||
" MLPBlock(dim, channel_dim),\n", | ||
" )\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
"\n", | ||
" x = x + self.token_mixer(x)\n", | ||
" x = x + self.channel_mixer(x)\n", | ||
"\n", | ||
" return x\n", | ||
"\n", | ||
"\n", | ||
"class MLPMixer(nn.Module):\n", | ||
" def __init__(self, num_classes: int, hidden_dim: int, depth: int, in_channels: int = 3, img_size: int = 224,\n", | ||
" patch_size: int = 16, token_dim: int = 256, channel_dim: int = 256):\n", | ||
" super().__init__()\n", | ||
"\n", | ||
" self.patch_embed = PatchEmbedding(in_channels, patch_size, hidden_dim)\n", | ||
" pix_per_patch = (img_size// patch_size) ** 2\n", | ||
"\n", | ||
" self.mixer_blks = nn.Sequential()\n", | ||
"\n", | ||
" for i in range(depth):\n", | ||
" self.mixer_blks.add_module(f\"MixerBlock_{i}\", \n", | ||
" MixerBlock(hidden_dim, pix_per_patch, token_dim, channel_dim))\n", | ||
"\n", | ||
" self.norm = nn.LayerNorm(hidden_dim)\n", | ||
" self.head = nn.Linear(hidden_dim, num_classes)\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" x = self.patch_embed(x)\n", | ||
" x = self.mixer_blks(x)\n", | ||
" x = self.norm(x)\n", | ||
" x = x.mean(dim=1)\n", | ||
" x = self.head(x)\n", | ||
"\n", | ||
" return x" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"===============================================================================================\n", | ||
"Layer (type:depth-idx) Output Shape Param #\n", | ||
"===============================================================================================\n", | ||
"MLPMixer [1, 1000] --\n", | ||
"├─PatchEmbedding: 1-1 [1, 196, 512] --\n", | ||
"│ └─Conv2d: 2-1 [1, 512, 14, 14] 393,728\n", | ||
"│ └─Rearrange: 2-2 [1, 196, 512] --\n", | ||
"├─Sequential: 1-2 [1, 196, 512] --\n", | ||
"│ └─MixerBlock: 2-3 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-1 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-2 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-4 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-3 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-4 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-5 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-5 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-6 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-6 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-7 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-8 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-7 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-9 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-10 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-8 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-11 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-12 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-9 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-13 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-14 [1, 196, 512] 2,100,736\n", | ||
"│ └─MixerBlock: 2-10 [1, 196, 512] --\n", | ||
"│ │ └─Sequential: 3-15 [1, 196, 512] 101,828\n", | ||
"│ │ └─Sequential: 3-16 [1, 196, 512] 2,100,736\n", | ||
"├─LayerNorm: 1-3 [1, 196, 512] 1,024\n", | ||
"├─Linear: 1-4 [1, 1000] 513,000\n", | ||
"===============================================================================================\n", | ||
"Total params: 18,528,264\n", | ||
"Trainable params: 18,528,264\n", | ||
"Non-trainable params: 0\n", | ||
"Total mult-adds (Units.MEGABYTES): 95.31\n", | ||
"===============================================================================================\n", | ||
"Input size (MB): 0.60\n", | ||
"Forward/backward pass size (MB): 61.38\n", | ||
"Params size (MB): 74.11\n", | ||
"Estimated Total Size (MB): 136.10\n", | ||
"===============================================================================================" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model = MLPMixer(num_classes=1000, hidden_dim=512, depth=8, patch_size=16,\n", | ||
" token_dim=256, channel_dim=2048)\n", | ||
"torchinfo.summary(model, (3, 224, 224), batch_dim = 0)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |