-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Fabian Perez *-* <nelsonfabiancs8@gmail.com>
- Loading branch information
1 parent
b96be04
commit 2b3c561
Showing
2 changed files
with
244 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
display_name, notebook_name, github_repository_path, arxiv_index | ||
Focal Loss,losses/focal-loss.ipynb,https://github.com/facebookresearch/Detectron,1708.02002 | ||
CELoss vs NLLLoss, losses/celoss-vs-nllloss.ipynb, , | ||
Network In Network, architectures/network-in-network.ipynb,,1312.4400 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[](https://github.com/semilleroCV/deep-learning-notes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# <font color='#4C5FDA'>**Cross Entropy Loss vs Negative Log Likelihood Loss** </font> <a name=\"tema1\">" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Original: https://www.youtube.com/watch?v=Ni1ViB1Ezjs&ab_channel=MakeesyAI\n", | ||
"import torch # 2.2.1\n", | ||
"from torch import nn" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"2.2.1\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(torch.__version__)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 5]) torch.float32\n", | ||
"tensor([[0.4499, 0.8788, 0.5056, 0.1445, 0.0907],\n", | ||
" [0.4715, 0.6950, 0.8860, 0.1334, 0.2139],\n", | ||
" [0.1923, 0.5645, 0.9867, 0.4618, 0.1355]], requires_grad=True)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# I simulate the model output with batch size = 3 and 5 classes.\n", | ||
"\n", | ||
"# The requires_grad simulates as if we were training a model.\n", | ||
"prediction = torch.rand(3, 5, requires_grad=True) \n", | ||
"print(prediction.size(), prediction.dtype)\n", | ||
"print(prediction)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3]) torch.int64\n", | ||
"tensor([0, 1, 4])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# I simulate the expected outputs of each batch element.\n", | ||
"# For the first element corresponds 0, for the second 1 and for the third 4.\n", | ||
"target = torch.tensor([0, 1, 4])\n", | ||
"print(target.size(), target.dtype)\n", | ||
"print(target)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"log_softmax = nn.LogSoftmax(dim=-1) # dim=-1 is so that it always operates on the model outputs not on the batch.\n", | ||
"loss_fn_nll = nn.NLLLoss()\n", | ||
"loss_fn_ce = nn.CrossEntropyLoss()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor(1.6802, grad_fn=<NllLossBackward0>)\n", | ||
"tensor(1.6802, grad_fn=<NllLossBackward0>)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"loss_nll = loss_fn_nll(log_softmax(prediction), target) # We have to apply log softmax\n", | ||
"loss_ce = loss_fn_ce(prediction, target) # Cross Entropy applies softmax\n", | ||
"\n", | ||
"# We obtain the loss as if we were training.\n", | ||
"loss_nll.backward()\n", | ||
"loss_ce.backward()\n", | ||
"\n", | ||
"# Imprimos la pérdida\n", | ||
"print(loss_nll)\n", | ||
"print(loss_ce)\n", | ||
"\n", | ||
"# Interestingly, both use the same method for error propagation." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# <font color='#4C5FDA'>**Extra: Binary Cross Entropy Loss vs Binary Cross Entropy Loss With Logits Loss** </font> <a name=\"tema1\">" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 1]) torch.float32\n", | ||
"tensor([[0.1320],\n", | ||
" [0.3074],\n", | ||
" [0.6341]], requires_grad=True)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"prediction = torch.rand(3, 1, requires_grad=True) \n", | ||
"print(prediction.size(), prediction.dtype)\n", | ||
"print(prediction)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch.Size([3, 1]) torch.float32\n", | ||
"tensor([[0.],\n", | ||
" [1.],\n", | ||
" [0.]])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"target = torch.tensor([0, 1, 0]).unsqueeze(1).float() # Only two classes\n", | ||
"print(target.size(), target.dtype)\n", | ||
"print(target)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sigmoid = nn.Sigmoid() \n", | ||
"loss_fn_bce = nn.BCELoss()\n", | ||
"loss_fn_bcewl = nn.BCEWithLogitsLoss() # This applies sigmoid " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor(0.7907, grad_fn=<BinaryCrossEntropyBackward0>)\n", | ||
"tensor(0.7907, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"loss_bce = loss_fn_bce(sigmoid(prediction), target) # We have to apply sigmoid\n", | ||
"loss_bcewl = loss_fn_bcewl(prediction, target)\n", | ||
"\n", | ||
"# We obtain the loss as if we were training.\n", | ||
"loss_bce.backward()\n", | ||
"loss_bcewl.backward()\n", | ||
"\n", | ||
"# We print the loss\n", | ||
"print(loss_bce)\n", | ||
"print(loss_bcewl)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "carvana-unet", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |