-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Mobilenetv1 on architectures (#14)
* Add Mobilenetv1 on architectures * Add Mobilenetv1 on architectures
- Loading branch information
1 parent
6622f34
commit e2f25d8
Showing
2 changed files
with
239 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[](https://github.com/semilleroCV/deep-learning-notes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## MobileNet V1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%%capture\n", | ||
"#@title **Install required packages**\n", | ||
"\n", | ||
"! pip install torchinfo" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#@title **Importing libraries**\n", | ||
"\n", | ||
"import torch # 2.3.1+cu121\n", | ||
"import torchinfo #1.8.0\n", | ||
"\n", | ||
"import torch.nn as nn\n", | ||
"from torch import Tensor" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"torch version: 2.3.1+cu121\n", | ||
"torchinfo version: 1.8.0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Note: Not all dependencies have the __version__ method.\n", | ||
"\n", | ||
"print(f\"torch version: {torch.__version__}\")\n", | ||
"print(f\"torchinfo version: {torchinfo.__version__}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Mobilenet V1 architecture code" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class ConvBlock(nn.Module):\n", | ||
" def __init__(self, in_channels: int, out_channels: int, stride: int):\n", | ||
" super(ConvBlock, self).__init__()\n", | ||
"\n", | ||
" self.conv_blk = nn.Sequential(\n", | ||
" nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),\n", | ||
" nn.BatchNorm2d(out_channels),\n", | ||
" nn.ReLU(),\n", | ||
" )\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return self.conv_blk(x)\n", | ||
"\n", | ||
"\n", | ||
"class DepthwiseConvBlock(nn.Module):\n", | ||
" def __init__(self, in_channels: int, out_channels: int, stride: int):\n", | ||
" super(DepthwiseConvBlock, self).__init__()\n", | ||
"\n", | ||
" self.depthwise_conv_blk = nn.Sequential(\n", | ||
" nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels, bias=False),\n", | ||
" nn.BatchNorm2d(in_channels),\n", | ||
" nn.ReLU(inplace=True),\n", | ||
" nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),\n", | ||
" nn.BatchNorm2d(out_channels),\n", | ||
" nn.ReLU(inplace=True),\n", | ||
" )\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return self.depthwise_conv_blk(x)\n", | ||
"\n", | ||
"\n", | ||
"class MobileNetV1(nn.Module):\n", | ||
" def __init__(self, layer_config: list, depth_multiplier: int, num_classes: int = 1000):\n", | ||
" super(MobileNetV1, self).__init__()\n", | ||
"\n", | ||
" \"\"\"depth multiplier is also called width_multiplier or alpha\"\"\"\n", | ||
"\n", | ||
" self.model = nn.Sequential()\n", | ||
"\n", | ||
" self.model.add_module('conv_blk_1', ConvBlock(3, 32, 2))\n", | ||
"\n", | ||
" for idx, params in enumerate(layer_config):\n", | ||
" \"\"\"layer_params: List -> (in_channels, out_channels, stride)\"\"\"\n", | ||
" self.model.add_module(f\"dw_blk_{idx}\",DepthwiseConvBlock(int(params[0]*depth_multiplier),\n", | ||
" (params[1]*depth_multiplier), params[2]))\n", | ||
" \n", | ||
" self.model.add_module('pool', nn.AdaptiveAvgPool2d(1))\n", | ||
" self.model.add_module('flatten', nn.Flatten())\n", | ||
" self.model.add_module('fc',nn.Linear(1024, num_classes))\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return self.model(x)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"==========================================================================================\n", | ||
"Layer (type:depth-idx) Output Shape Param #\n", | ||
"==========================================================================================\n", | ||
"MobileNetV1 [1, 1000] --\n", | ||
"├─Sequential: 1-1 [1, 1000] --\n", | ||
"│ └─ConvBlock: 2-1 [1, 32, 112, 112] --\n", | ||
"│ │ └─Sequential: 3-1 [1, 32, 112, 112] 928\n", | ||
"│ └─DepthwiseConvBlock: 2-2 [1, 64, 112, 112] --\n", | ||
"│ │ └─Sequential: 3-2 [1, 64, 112, 112] 2,528\n", | ||
"│ └─DepthwiseConvBlock: 2-3 [1, 128, 56, 56] --\n", | ||
"│ │ └─Sequential: 3-3 [1, 128, 56, 56] 9,152\n", | ||
"│ └─DepthwiseConvBlock: 2-4 [1, 128, 56, 56] --\n", | ||
"│ │ └─Sequential: 3-4 [1, 128, 56, 56] 18,048\n", | ||
"│ └─DepthwiseConvBlock: 2-5 [1, 256, 28, 28] --\n", | ||
"│ │ └─Sequential: 3-5 [1, 256, 28, 28] 34,688\n", | ||
"│ └─DepthwiseConvBlock: 2-6 [1, 256, 28, 28] --\n", | ||
"│ │ └─Sequential: 3-6 [1, 256, 28, 28] 68,864\n", | ||
"│ └─DepthwiseConvBlock: 2-7 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-7 [1, 512, 14, 14] 134,912\n", | ||
"│ └─DepthwiseConvBlock: 2-8 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-8 [1, 512, 14, 14] 268,800\n", | ||
"│ └─DepthwiseConvBlock: 2-9 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-9 [1, 512, 14, 14] 268,800\n", | ||
"│ └─DepthwiseConvBlock: 2-10 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-10 [1, 512, 14, 14] 268,800\n", | ||
"│ └─DepthwiseConvBlock: 2-11 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-11 [1, 512, 14, 14] 268,800\n", | ||
"│ └─DepthwiseConvBlock: 2-12 [1, 512, 14, 14] --\n", | ||
"│ │ └─Sequential: 3-12 [1, 512, 14, 14] 268,800\n", | ||
"│ └─DepthwiseConvBlock: 2-13 [1, 1024, 7, 7] --\n", | ||
"│ │ └─Sequential: 3-13 [1, 1024, 7, 7] 531,968\n", | ||
"│ └─DepthwiseConvBlock: 2-14 [1, 1024, 7, 7] --\n", | ||
"│ │ └─Sequential: 3-14 [1, 1024, 7, 7] 1,061,888\n", | ||
"│ └─AdaptiveAvgPool2d: 2-15 [1, 1024, 1, 1] --\n", | ||
"│ └─Flatten: 2-16 [1, 1024] --\n", | ||
"│ └─Linear: 2-17 [1, 1000] 1,025,000\n", | ||
"==========================================================================================\n", | ||
"Total params: 4,231,976\n", | ||
"Trainable params: 4,231,976\n", | ||
"Non-trainable params: 0\n", | ||
"Total mult-adds (M): 568.76\n", | ||
"==========================================================================================\n", | ||
"Input size (MB): 0.60\n", | ||
"Forward/backward pass size (MB): 80.69\n", | ||
"Params size (MB): 16.93\n", | ||
"Estimated Total Size (MB): 98.22\n", | ||
"==========================================================================================" | ||
] | ||
}, | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Declare parameters for depth-wise separable convolution layers -> (in_channels, out_channels, stride)\n", | ||
"dw_params = [\n", | ||
" (32, 64, 1),\n", | ||
" (64, 128, 2),\n", | ||
" (128, 128, 1),\n", | ||
" (128, 256, 2),\n", | ||
" (256, 256, 1),\n", | ||
" (256, 512, 2),\n", | ||
" (512, 512, 1),\n", | ||
" (512, 512, 1),\n", | ||
" (512, 512, 1),\n", | ||
" (512, 512, 1),\n", | ||
" (512, 512, 1),\n", | ||
" (512, 1024, 2),\n", | ||
" (1024, 1024, 1),\n", | ||
"]\n", | ||
"\n", | ||
"model = MobileNetV1(layer_config=dw_params, depth_multiplier=1, num_classes=1000)\n", | ||
"torchinfo.summary(model, (3, 224, 224), batch_dim = 0)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |