Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Mobilenetv1 on architectures #14

Merged
merged 2 commits into from
Jun 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions automation/notebooks-table-data.csv
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ Network In Network, architectures/network-in-network.ipynb,,1312.4400
Xception, architectures/xception.ipynb,,1610.02357v3
Pixel Shuffle, modules/pixel-shuffle.ipynb,,1609.05158
U-Net, architectures/unet.ipynb,,1505.04597
Mobilenet V1, architectures/mobilenetv1.ipynb,,1704.04861
238 changes: 238 additions & 0 deletions notebooks/architectures/mobilenetv1.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[![deep-learning-notes](https://github.com/semilleroCV/deep-learning-notes/raw/main/assets/banner-notebook.png)](https://github.com/semilleroCV/deep-learning-notes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## MobileNet V1"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%%capture\n",
"#@title **Install required packages**\n",
"\n",
"! pip install torchinfo"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#@title **Importing libraries**\n",
"\n",
"import torch # 2.3.1+cu121\n",
"import torchinfo #1.8.0\n",
"\n",
"import torch.nn as nn\n",
"from torch import Tensor"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch version: 2.3.1+cu121\n",
"torchinfo version: 1.8.0\n"
]
}
],
"source": [
"# Note: Not all dependencies have the __version__ method.\n",
"\n",
"print(f\"torch version: {torch.__version__}\")\n",
"print(f\"torchinfo version: {torchinfo.__version__}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mobilenet V1 architecture code"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"class ConvBlock(nn.Module):\n",
" def __init__(self, in_channels: int, out_channels: int, stride: int):\n",
" super(ConvBlock, self).__init__()\n",
"\n",
" self.conv_blk = nn.Sequential(\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),\n",
" nn.BatchNorm2d(out_channels),\n",
" nn.ReLU(),\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return self.conv_blk(x)\n",
"\n",
"\n",
"class DepthwiseConvBlock(nn.Module):\n",
" def __init__(self, in_channels: int, out_channels: int, stride: int):\n",
" super(DepthwiseConvBlock, self).__init__()\n",
"\n",
" self.depthwise_conv_blk = nn.Sequential(\n",
" nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels, bias=False),\n",
" nn.BatchNorm2d(in_channels),\n",
" nn.ReLU(inplace=True),\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),\n",
" nn.BatchNorm2d(out_channels),\n",
" nn.ReLU(inplace=True),\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return self.depthwise_conv_blk(x)\n",
"\n",
"\n",
"class MobileNetV1(nn.Module):\n",
" def __init__(self, layer_config: list, depth_multiplier: int, num_classes: int = 1000):\n",
" super(MobileNetV1, self).__init__()\n",
"\n",
" \"\"\"depth multiplier is also called width_multiplier or alpha\"\"\"\n",
"\n",
" self.model = nn.Sequential()\n",
"\n",
" self.model.add_module('conv_blk_1', ConvBlock(3, 32, 2))\n",
"\n",
" for idx, params in enumerate(layer_config):\n",
" \"\"\"layer_params: List -> (in_channels, out_channels, stride)\"\"\"\n",
" self.model.add_module(f\"dw_blk_{idx}\",DepthwiseConvBlock(int(params[0]*depth_multiplier),\n",
" (params[1]*depth_multiplier), params[2]))\n",
" \n",
" self.model.add_module('pool', nn.AdaptiveAvgPool2d(1))\n",
" self.model.add_module('flatten', nn.Flatten())\n",
" self.model.add_module('fc',nn.Linear(1024, num_classes))\n",
"\n",
" def forward(self, x):\n",
" return self.model(x)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"==========================================================================================\n",
"Layer (type:depth-idx) Output Shape Param #\n",
"==========================================================================================\n",
"MobileNetV1 [1, 1000] --\n",
"├─Sequential: 1-1 [1, 1000] --\n",
"│ └─ConvBlock: 2-1 [1, 32, 112, 112] --\n",
"│ │ └─Sequential: 3-1 [1, 32, 112, 112] 928\n",
"│ └─DepthwiseConvBlock: 2-2 [1, 64, 112, 112] --\n",
"│ │ └─Sequential: 3-2 [1, 64, 112, 112] 2,528\n",
"│ └─DepthwiseConvBlock: 2-3 [1, 128, 56, 56] --\n",
"│ │ └─Sequential: 3-3 [1, 128, 56, 56] 9,152\n",
"│ └─DepthwiseConvBlock: 2-4 [1, 128, 56, 56] --\n",
"│ │ └─Sequential: 3-4 [1, 128, 56, 56] 18,048\n",
"│ └─DepthwiseConvBlock: 2-5 [1, 256, 28, 28] --\n",
"│ │ └─Sequential: 3-5 [1, 256, 28, 28] 34,688\n",
"│ └─DepthwiseConvBlock: 2-6 [1, 256, 28, 28] --\n",
"│ │ └─Sequential: 3-6 [1, 256, 28, 28] 68,864\n",
"│ └─DepthwiseConvBlock: 2-7 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-7 [1, 512, 14, 14] 134,912\n",
"│ └─DepthwiseConvBlock: 2-8 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-8 [1, 512, 14, 14] 268,800\n",
"│ └─DepthwiseConvBlock: 2-9 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-9 [1, 512, 14, 14] 268,800\n",
"│ └─DepthwiseConvBlock: 2-10 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-10 [1, 512, 14, 14] 268,800\n",
"│ └─DepthwiseConvBlock: 2-11 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-11 [1, 512, 14, 14] 268,800\n",
"│ └─DepthwiseConvBlock: 2-12 [1, 512, 14, 14] --\n",
"│ │ └─Sequential: 3-12 [1, 512, 14, 14] 268,800\n",
"│ └─DepthwiseConvBlock: 2-13 [1, 1024, 7, 7] --\n",
"│ │ └─Sequential: 3-13 [1, 1024, 7, 7] 531,968\n",
"│ └─DepthwiseConvBlock: 2-14 [1, 1024, 7, 7] --\n",
"│ │ └─Sequential: 3-14 [1, 1024, 7, 7] 1,061,888\n",
"│ └─AdaptiveAvgPool2d: 2-15 [1, 1024, 1, 1] --\n",
"│ └─Flatten: 2-16 [1, 1024] --\n",
"│ └─Linear: 2-17 [1, 1000] 1,025,000\n",
"==========================================================================================\n",
"Total params: 4,231,976\n",
"Trainable params: 4,231,976\n",
"Non-trainable params: 0\n",
"Total mult-adds (M): 568.76\n",
"==========================================================================================\n",
"Input size (MB): 0.60\n",
"Forward/backward pass size (MB): 80.69\n",
"Params size (MB): 16.93\n",
"Estimated Total Size (MB): 98.22\n",
"=========================================================================================="
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Declare parameters for depth-wise separable convolution layers -> (in_channels, out_channels, stride)\n",
"dw_params = [\n",
" (32, 64, 1),\n",
" (64, 128, 2),\n",
" (128, 128, 1),\n",
" (128, 256, 2),\n",
" (256, 256, 1),\n",
" (256, 512, 2),\n",
" (512, 512, 1),\n",
" (512, 512, 1),\n",
" (512, 512, 1),\n",
" (512, 512, 1),\n",
" (512, 512, 1),\n",
" (512, 1024, 2),\n",
" (1024, 1024, 1),\n",
"]\n",
"\n",
"model = MobileNetV1(layer_config=dw_params, depth_multiplier=1, num_classes=1000)\n",
"torchinfo.summary(model, (3, 224, 224), batch_dim = 0)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}