Skip to content

Commit

Permalink
M: mod plot scripts about with-as
Browse files Browse the repository at this point in the history
  • Loading branch information
skyleaworlder committed Oct 28, 2020
1 parent 8b6d504 commit 02a480a
Show file tree
Hide file tree
Showing 3 changed files with 79 additions and 80 deletions.
52 changes: 26 additions & 26 deletions scripts/plot1_1.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,32 +5,32 @@
with open("../data/lab_1_1_data.txt", "r") as f:
arr = np.loadtxt(f, dtype=float)

mean1_1_target = arr[0]
var1_1_target = arr[1]
num1_1_target = int(arr[2])
mean1_1_eval_mle = arr[-4]
var1_1_eval_mle = arr[-3]
mean1_1_eval_moe = arr[-2]
var1_1_eval_moe = arr[-1]
arr = arr[3:-4]
mean1_1_target = arr[0]
var1_1_target = arr[1]
num1_1_target = int(arr[2])
mean1_1_eval_mle = arr[-4]
var1_1_eval_mle = arr[-3]
mean1_1_eval_moe = arr[-2]
var1_1_eval_moe = arr[-1]
arr = arr[3:-4]

min1_1, max1_1 = np.min(arr), np.max(arr)
arr = np.sort(arr)
min1_1, max1_1 = np.min(arr), np.max(arr)
arr = np.sort(arr)

x_arr = np.zeros(num1_1_target)
y_arr = np.zeros(num1_1_target)
yac_arr = np.zeros(num1_1_target)
stride = (max1_1 - min1_1) / num1_1_target
for i in range(num1_1_target):
x = min1_1 + i * stride
y = len(np.where(arr < x)[0]) / num1_1_target
yac = norm.cdf(x-mean1_1_target, scale=var1_1_target)
x_arr[i], y_arr[i], yac_arr[i] = x, y, yac
x_arr = np.zeros(num1_1_target)
y_arr = np.zeros(num1_1_target)
yac_arr = np.zeros(num1_1_target)
stride = (max1_1 - min1_1) / num1_1_target
for i in range(num1_1_target):
x = min1_1 + i * stride
y = len(np.where(arr < x)[0]) / num1_1_target
yac = norm.cdf(x-mean1_1_target, scale=var1_1_target)
x_arr[i], y_arr[i], yac_arr[i] = x, y, yac

plt.plot(x_arr, y_arr, "b-", label="Experimental Value")
plt.plot(x_arr, yac_arr, "r-", label="Theoretical Value")
plt.axis([min1_1-1, max1_1+1, 0, 1])
plt.xlabel("x", horizontalalignment="right")
plt.ylabel("y", rotation=0, verticalalignment="top")
plt.legend()
plt.show()
plt.plot(x_arr, y_arr, "b-", label="Experimental Value")
plt.plot(x_arr, yac_arr, "r-", label="Theoretical Value")
plt.axis([min1_1-1, max1_1+1, 0, 1])
plt.xlabel("x", horizontalalignment="right")
plt.ylabel("y", rotation=0, verticalalignment="top")
plt.legend()
plt.show()
50 changes: 25 additions & 25 deletions scripts/plot1_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,31 +5,31 @@
with open("../data/lab_1_2_data.txt", "r") as f:
arr = np.loadtxt(f, dtype=float)

''' it has to be noticed that beta is scale parameter,
while sigma is scale parameter in normal distribution.
'''
beta1_2_target = arr[0]
num1_2_target = int(arr[1])
arr = arr[2:-1]
''' it has to be noticed that beta is scale parameter,
while sigma is scale parameter in normal distribution.
'''
beta1_2_target = arr[0]
num1_2_target = int(arr[1])
arr = arr[2:-1]

min1_2, max1_2 = np.min(arr), np.max(arr)
mean1_2_target = np.mean(arr)
arr = np.sort(arr)
min1_2, max1_2 = np.min(arr), np.max(arr)
mean1_2_target = np.mean(arr)
arr = np.sort(arr)

x_arr = np.zeros(num1_2_target)
y_arr = np.zeros(num1_2_target)
yac_arr = np.zeros(num1_2_target)
stride = (max1_2 - min1_2) / num1_2_target
for i in range(num1_2_target):
x = min1_2 + i * stride
y = len(np.where(arr < x)[0]) / num1_2_target
yac = expon.cdf(x, scale=beta1_2_target)
x_arr[i], y_arr[i], yac_arr[i] = x, y, yac
x_arr = np.zeros(num1_2_target)
y_arr = np.zeros(num1_2_target)
yac_arr = np.zeros(num1_2_target)
stride = (max1_2 - min1_2) / num1_2_target
for i in range(num1_2_target):
x = min1_2 + i * stride
y = len(np.where(arr < x)[0]) / num1_2_target
yac = expon.cdf(x, scale=beta1_2_target)
x_arr[i], y_arr[i], yac_arr[i] = x, y, yac

plt.plot(x_arr, y_arr, "b-", label="Experimental Value")
plt.plot(x_arr, yac_arr, "r-", label="Theoretical Value")
plt.axis([min1_2-1, max1_2+1, 0, 1])
plt.xlabel("x", horizontalalignment="right")
plt.ylabel("y", rotation=0, verticalalignment="top")
plt.legend()
plt.show()
plt.plot(x_arr, y_arr, "b-", label="Experimental Value")
plt.plot(x_arr, yac_arr, "r-", label="Theoretical Value")
plt.axis([min1_2-1, max1_2+1, 0, 1])
plt.xlabel("x", horizontalalignment="right")
plt.ylabel("y", rotation=0, verticalalignment="top")
plt.legend()
plt.show()
57 changes: 28 additions & 29 deletions scripts/plot1_3.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,39 +3,38 @@

with open("../data/lab_1_3_data1.txt", "r") as f:
arr_c1 = np.loadtxt(f, dtype=float)
with open("../data/lab_1_3_data2.txt", "r") as f:
arr_c05 = np.loadtxt(f, dtype=float)
with open("../data/lab_1_3_data3.txt", "r") as f:
arr_c05t = np.loadtxt(f, dtype=float)

num1_3_target = int(arr_c1[1])
arr_c1 = arr_c1[2:]
num1_3_target = int(arr_c1[1])
arr_c1 = arr_c1[2:]

min1_3_c1, max1_3_c1 = np.min(arr_c1), np.max(arr_c1)
x_c1arr = np.zeros(num1_3_target)
y_c1arr = np.zeros(num1_3_target)
stride = (max1_3_c1 - min1_3_c1) / num1_3_target
for i in range(num1_3_target):
x = min1_3_c1 + i * stride
y = len(np.where(arr_c1 < x)[0]) / num1_3_target
x_c1arr[i], y_c1arr[i] = x, y
min1_3_c1, max1_3_c1 = np.min(arr_c1), np.max(arr_c1)
x_c1arr = np.zeros(num1_3_target)
y_c1arr = np.zeros(num1_3_target)
stride = (max1_3_c1 - min1_3_c1) / num1_3_target
for i in range(num1_3_target):
x = min1_3_c1 + i * stride
y = len(np.where(arr_c1 < x)[0]) / num1_3_target
x_c1arr[i], y_c1arr[i] = x, y

num1_3_target = int(arr_c05[1])
arr_c05 = arr_c05[2:]
with open("../data/lab_1_3_data2.txt", "r") as f:
arr_c05 = np.loadtxt(f, dtype=float)
num1_3_target = int(arr_c05[1])
arr_c05 = arr_c05[2:]

min1_3_c05, max1_3_c05 = np.min(arr_c05), np.max(arr_c05)
x_c05arr = np.zeros(num1_3_target)
y_c05arr = np.zeros(num1_3_target)
stride = (max1_3_c05 - min1_3_c05) / num1_3_target
for i in range(num1_3_target):
x = min1_3_c05 + i * stride
y = len(np.where(arr_c05 < x)[0]) / num1_3_target
x_c05arr[i], y_c05arr[i] = x, y
min1_3_c05, max1_3_c05 = np.min(arr_c05), np.max(arr_c05)
x_c05arr = np.zeros(num1_3_target)
y_c05arr = np.zeros(num1_3_target)
stride = (max1_3_c05 - min1_3_c05) / num1_3_target
for i in range(num1_3_target):
x = min1_3_c05 + i * stride
y = len(np.where(arr_c05 < x)[0]) / num1_3_target
x_c05arr[i], y_c05arr[i] = x, y

num1_3_target = int(arr_c05t[2])
x_c05tarr = np.array(arr_c05t[5:5+num1_3_target])
y_c05tarr = np.array(arr_c05t[5+num1_3_target:5+num1_3_target*2])
print(arr_c05t[5+num1_3_target:5+num1_3_target*2])
with open("../data/lab_1_3_data3.txt", "r") as f:
arr_c05t = np.loadtxt(f, dtype=float)
num1_3_target = int(arr_c05t[2])
x_c05tarr = np.array(arr_c05t[5:5+num1_3_target])
y_c05tarr = np.array(arr_c05t[5+num1_3_target:5+num1_3_target*2])
print(arr_c05t[5+num1_3_target:5+num1_3_target*2])

plt.plot(x_c1arr, y_c1arr, "b-", label="Experimental Value")
plt.plot(x_c05arr, y_c05arr, "r+", label="Experimental Value")
Expand Down

0 comments on commit 02a480a

Please sign in to comment.