Skip to content

Webshell Detection Based on the Word Attention Mechanism

Notifications You must be signed in to change notification settings

the-lans/WebshellDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Webshell Detection

Webshell Detection Based on the Word Attention Mechanism

Read this article

Cloned from https://github.com/leett1/Programe/

Editing directory project.zip

Install packages:

  • gensim==3.8.1
  • python-Levenshtein==0.12.0
  • pathlib==1.0.1
  • numpy==1.19.2
  • tensorflow==1.14
  • keras==2.3.1
  • scikit-learn==0.24.1

Initializing a machine learning environment

Deploying a virtual environment Anaconda3

  • Install packages

    yum install -y zlib-devel bzip2 bzip2-devel readline-devel sqlite sqlite-devel openssl-devel xz xz-devel libffi-devel

  • Install Anaconda3

    curl -O https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh

    bash Anaconda3-2019.03-Linux-x86_64.sh

  • Edit file .bashrc

    vim ~/.bashrc

    Add this text to the end of the file:

    export PATH="/home//anaconda3/bin:$PATH"

    <user> - replace with user

  • source ~/.bash_profile

  • Install environment

    conda create -n tf1_env

    conda activate tf1_env

Project ML

  • cd /var

  • mkdir cnn_word2wec_sentence

  • chmod 775 cnn_word2wec_sentence

  • chown <user>:<group user> cnn_word2wec_sentence

  • cd /var/cnn_word2wec_sentence

Remote Python interpreter

  • Interpreter: /home/<user>/anaconda3/envs/tf1_env/bin/python

    <user> - replace with user

  • Project migration: /var/cnn_word2wec_sentence

Python libraries

  • Project path

    cd /var/cnn_word2wec_sentence

  • Activate env

    conda activate tf1_env

  • Install TensorFlow

    conda install tensorflow==1.14.0

    conda install keras==2.3.1

  • Install requirements

    pip install -r requirements.txt

  • Check

    python -V

    python -c 'import tensorflow as tf; print(tf.__version__)'

Train & test models

  1. Model training: python3 one_attention_model.py

    Output: one_attention_mode190626_dan.h5

  2. Model training: python3 train_model.py

    Output: two_attention_mode190317.h5

  3. Model training: python3 word2vec_train.py

    Output: word_train190313.model

  4. Edit the file and run the model test: python3 test_1.py

About

Webshell Detection Based on the Word Attention Mechanism

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published