Skip to content

Show how DCGAN works. Contains some code about the generator, discriminator and training step.

License

Notifications You must be signed in to change notification settings

ugis22/creatingDCGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 

Repository files navigation

******** 🚧🚧 UNDER CONSTRUCTION 🚧🚧 ************

Deep Convolutional Generative adversarial network

Introduction

Generative Adversarial Networks (GAN) has been described in 2014 by Ian Goodfellow and other researchers belonging to the University of Montreal. The most interesting point about GAN is that they can learn how to mimic the distribution of certain data and through that, generate images, music, speechs, texts, and much more. Briefly, GAN is composed of two neural networks: a convolutional network called "The Generator" which will generate images from a noise vector and another flipped convolutional network called "The discriminator" that determines if the image came from real data or was generated.

Objective

The aim of this project is to build a deep convolutional GAN that takes as an input images and generates similar new images.

How GAN works

  • Generator
  • Discriminator

******** 🚧🚧 UNDER CONSTRUCTION 🚧🚧 ************

About

Show how DCGAN works. Contains some code about the generator, discriminator and training step.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages