This paper has been published in Expert Systems with Applications, checkout the link below for the full version: https://www.sciencedirect.com/science/article/pii/S0957417425000831
This codebase is built on top of Detectron2. Follow the instructions here to install Detectron2.
Dataset | Weights |
---|---|
PubTables1M | PubTables1M |
FinTabNet | FinTabNet |
SciTSR | SciTSR |
Check the inference.py and test.sh for the inference. A sample inference command could be:
python inference.py --mode recognize --structure_config_path <path of config.yaml> --structure_model_path <path of weight> --structure_device cuda --image_dir <dir of table images> --out_dir <output dir> --html --visualize --csv --crop_padding 0
Check the teds.py for calculating the TEDS score.
Please cite our work if you think it is helpful:
@article{xiao2025rethinking,
title={Rethinking detection based table structure recognition for visually rich document images},
author={Xiao, Bin and Simsek, Murat and Kantarci, Burak and Alkheir, Ala Abu},
journal={Expert Systems with Applications},
pages={126461},
year={2025},
publisher={Elsevier}
}
This project heavily relys on Table-Transformer, especially for the post-processing part. We thank the authors for sharing their implementations and related resources.