scCMA: a constrasive masked autoencoder for single-cell RNA-seq clustering
Place the h5 dataset in the data/
directory,
h5 file contains gene expression X and true label Y.
Set the dataset read path and result storage path
# Datasets directory and output directory
args["paths"] = {"data": "./data/", "results": "./result/"}
Parameter settings.
hidden_size=128,
dropout=0.1,
masked_data_weight=0.75,
mask_loss_weight=0.7,
contrastive_weight=0.07
scCMA can be run with the following commands.
python run_scCMA.py