-
featureExtraction 完成了利用OpenCV对图像进行特征提取的功能,特征点包含:ORB, SIFT, SURF, AKAZE, BRIEF。特征提取还包括两类方法,一类是直接提取,另一类是将原图细分为多个子图再提取。详情见featureExtraction/README.md;
-
featureMatching 完成了利用OpenCV对步骤1中提取的特征点进行特征匹配的操作,匹配方法主要包括Flann和BruteForce匹配。Flann中主要用了最近邻比例法来筛选合适的匹配对,而暴力匹配法则是基于经验设置阈值条件来筛选。详情见featureMatching/README.md;
-
triangularPoints 完成了利用OpenCV以及Eigen对匹配的特征点对恢复空间点,重建环境的目标。ORB-SLAM和VINS-MONO均是通过构建
$Hx = 0$ 来计算空间点。三角化原理及其误差分析可以详见triangulatePoints/README.md; -
depthFilter 完成了利用多个开源SLAM系统使用的三角化方法,并计算其深度不确定性,利用不同帧对点进行深度滤波。深度滤波原理可以详见depthFilter/README.md;
-
epipolarSearch 完成了基于NCC的极线搜索方法,通过设置深度范围计算极线,利用NCC计算匹配分数。极线搜索可以详见epipolarSearch/README.md;
-
stereoMatching 完成了利用对齐图像的极线搜索计算NCC匹配分数,匹配分数符合阈值条件的,实现视差图和深度图。双目匹配可以详见stereoMatching/README.md;
-
epipolarConstrain 完成了利用对极几何约束求解两帧间相对运动,并验证求解误差。详情可见epipolarConstrain/README.md;
-
ComputeHomography 完成了利用单应约束求解两帧间的单应矩阵,并将两个图像连接起来。详情可见ComputeHomography/README.md;
-
PNP 完成了利用两帧(一个带三维点,一个带二维点)间的相对位姿估计,并验证求解误差。详情可见PNP/README.md;
-
ICP 完成了利用两帧(均有三维点)间的相对位姿估计,并验证求解误差。详情可见ICP/README.md;
-
Notifications
You must be signed in to change notification settings - Fork 6
yepeichu123/slam_module
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published