Skip to content

Latest commit

 

History

History
103 lines (67 loc) · 1.73 KB

README.md

File metadata and controls

103 lines (67 loc) · 1.73 KB

Twitter Stream Processing Pipeline

Project Overview

The Twitter Stream Processing Pipeline is an application that designed to handle, process, and visualize insights about tweets in real-time. The pipeline ingests tweets from a simulated generator, processes and handle the data in a scala producer, and send data in python consumer and renders the results in a user-friendly web application using express & react. It supports searchability across text, time, and location.


Installation and Setup

Prerequisites

  • Programming Languages: Python 3.8+, JavaScript, scala
  • Docker

Steps to Set Up

Step 1: Navigate to the Directory

docker compose up -d

Step 2: Run Scala

Step 3: Navigate to the elasticsearch Directory

[Optional: Set up Virtual Environment]

  • For Windows:

    python -m venv .venv
    .venv\Scripts\activate
  • For macOS/Linux:

    python3 -m venv .venv
    source .venv/bin/activate

Step 4: Install Dependencies

pip install -r requirements.txt

python elasticsearch-consumer.py

Step 5: Navigate to backend Directory

Set up .env file

  • For Windows:

    copy .env.example .env
  • For macOS/Linux:

    cp .env.example .env

Step 6: Install Dependencies

npm i

Step 7: Run the Backend

npm run start

Step 8: Navigate to frontend Directory

Set up .env file

  • For Windows:

    copy .env.example .env
  • For macOS/Linux:

    cp .env.example .env

Step 9: Install Dependencies

npm i

Step 10: Run the Frontend

npm run start