Skip to content

yousef-najeh/Big-Data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Twitter Stream Processing Pipeline

Project Overview

The Twitter Stream Processing Pipeline is an application that designed to handle, process, and visualize insights about tweets in real-time. The pipeline ingests tweets from a simulated generator, processes and handle the data in a scala producer, and send data in python consumer and renders the results in a user-friendly web application using express & react. It supports searchability across text, time, and location.


Installation and Setup

Prerequisites

  • Programming Languages: Python 3.8+, JavaScript, scala
  • Docker

Steps to Set Up

Step 1: Navigate to the Directory

docker compose up -d

Step 2: Run Scala

Step 3: Navigate to the elasticsearch Directory

[Optional: Set up Virtual Environment]

  • For Windows:

    python -m venv .venv
    .venv\Scripts\activate
  • For macOS/Linux:

    python3 -m venv .venv
    source .venv/bin/activate

Step 4: Install Dependencies

pip install -r requirements.txt

python elasticsearch-consumer.py

Step 5: Navigate to backend Directory

Set up .env file

  • For Windows:

    copy .env.example .env
  • For macOS/Linux:

    cp .env.example .env

Step 6: Install Dependencies

npm i

Step 7: Run the Backend

npm run start

Step 8: Navigate to frontend Directory

Set up .env file

  • For Windows:

    copy .env.example .env
  • For macOS/Linux:

    cp .env.example .env

Step 9: Install Dependencies

npm i

Step 10: Run the Frontend

npm run start

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •