The official implement (python2.7+tensorflow):https://github.com/Yang7879/3D-RecGAN
Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni. In ICCV Workshops, 2017.
https://arxiv.org/abs/1708.07969
- Python >= 3.5 (3.6 recommended)
- Training : pytorch>=1.0
- torchvision>=0.4.0
- tqdm
Input:
https://drive.google.com/open?id=1n4qQzSd_S6Isd6WjKD_sq6LKqn4tiQm9
Data are also available at Baidu Pan:
https://pan.baidu.com/s/165IXaA_JISCwGzTUCiuPig 提取码: gbp2
python train.py -c config.json
python test.py -c config.json
- Transfer the generated ply file to off format. (Recommend meshlab)
- Open the unity project in
visualization
dir. - Modify the
Data Path
inPoint Cloud Manager
script ofMain Camera
. (PS: relative path toassert
dir) - Run the unity project and the projected images around 3D object will be saved.
- Transfer the saved images to gif. (Recommend https://www.iloveimg.com/)
IOU | CE Loss | |||||
---|---|---|---|---|---|---|
trained/tested on | chair | stool | toilet | chair | stool | toilet |
3D-RecAE(CE loss) | 0.633 | 0.488 | 0.520 | 0.069 | 0.085 | 0.166 |
3D-RecGAN | 0.661 | 0.501 | 0.569 | 0.074 | 0.083 | 0.157 |
IOU | CE Loss | |||||
---|---|---|---|---|---|---|
trained/tested on | chair | stool | toilet | chair | stool | toilet |
3D-RecAE(CE loss) | 0.5931 | * | * | 0.0547 | * | * |
3D-RecAE(L1 loss) | 0.5171 | * | * | 0.4769 | * | * |
3D-RecGAN | 0.4478 | * | * | 0.0805 | * | * |
- RecGAN : Per-category IoU and CE Loss
- RecAE : Per-category IoU and CE Loss
- Multi-category IoU and CE Loss
- Cross-category IoU and CE Loss