Skip to content

Commit

Permalink
Create quantum_computer.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jul 15, 2024
1 parent a216ff9 commit 5020154
Showing 1 changed file with 63 additions and 0 deletions.
63 changes: 63 additions & 0 deletions quantum_computer/quantum_computer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import numpy as np
from qiskit import QuantumCircuit, execute

class QuantumComputer:
def __init__(self, num_qubits):
self.num_qubits = num_qubits

def create_quantum_circuit(self):
"""
Create a quantum circuit using Qiskit.
Returns:
QuantumCircuit: The created quantum circuit.
"""
circuit = QuantumCircuit(self.num_qubits)
return circuit

def add_quantum_gates(self, circuit, gates):
"""
Add quantum gates to a quantum circuit.
Args:
circuit (QuantumCircuit): The quantum circuit to add gates to.
gates (list): The quantum gates to add.
"""
for gate in gates:
circuit.append(gate, [i for i in range(self.num_qubits)])

def execute_quantum_circuit(self, circuit):
"""
Execute a quantum circuit using Qiskit.
Args:
circuit (QuantumCircuit): The quantum circuit to execute.
Returns:
numpy array: The result of the quantum circuit execution.
"""
job = execute(circuit, backend="qasm_simulator")
result = job.result()
return result.get_statevector()

def optimize_quantum_circuit(self, circuit, objective_function):
"""
Optimize a quantum circuit using a genetic algorithm.
Args:
circuit (QuantumCircuit): The quantum circuit to optimize.
objective_function (function): The objective function to optimize.
Returns:
QuantumCircuit: The optimized quantum circuit.
"""
from scipy.optimize import differential_evolution
def objective_function_wrapper(params):
circuit.set_parameters(params)
result = execute(circuit, backend="qasm_simulator")
return objective_function(result.get_statevector())
bounds = [(0, 2 * np.pi) for _ in range(circuit.num_parameters)]
result = differential_evolution(objective_function_wrapper, bounds)
optimized_parameters = result.x
circuit.set_parameters(optimized_parameters)
return circuit

0 comments on commit 5020154

Please sign in to comment.