Skip to content

Commit

Permalink
Merge branch 'recovered-branch'
Browse files Browse the repository at this point in the history
  • Loading branch information
Cyletix committed Feb 24, 2025
2 parents bf6943e + e1cbba8 commit acf7b0d
Show file tree
Hide file tree
Showing 32 changed files with 3,199 additions and 2,436 deletions.
4 changes: 2 additions & 2 deletions .obsidian/community-plugins.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
[
"obsidian-git",
"dataview",
"obsidian-view-mode-by-frontmatter",
"obsidian-latex-suite",
Expand All @@ -8,5 +7,6 @@
"open-vscode",
"obsidian-matrix",
"obsidian-tikzjax",
"quickadd"
"quickadd",
"obsidian-git"
]
4 changes: 2 additions & 2 deletions .obsidian/plugins/templater-obsidian/main.js

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion .obsidian/plugins/templater-obsidian/manifest.json
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
{
"id": "templater-obsidian",
"name": "Templater",
"version": "2.9.1",
"version": "2.9.3",
"description": "Create and use templates",
"minAppVersion": "1.5.0",
"author": "SilentVoid",
Expand Down
20 changes: 10 additions & 10 deletions Other/例题/高数1真题/数一2009.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ https://www.bilibili.com/video/BV1Lu411T76t
- 综上可知 $\max _{1<k<1}\left\{I_k\right\}=I_1$.

## (3)
设函数$y=f(x)$在区间$[-13]$上的图形,如下图所示则函数$\displaystyle F(x)=\int_{0}^{x} f(t) \mathrm{d} t$ 的图形为 $(\quad)$
设函数$y=f(x)$在区间$[-1\text{,}3]$上的图形,如下图所示则函数$\displaystyle F(x)=\int_{0}^{x} f(t) \mathrm{d} t$ 的图形为 $(\quad)$
## (3)解
答 应选(D).
解 根据题中函数 $y=f(x)$ 的图形, 可知函数 $\displaystyle F(x)=\int_0^x f(t) \mathrm{d} t$ 在除了 $x=0, x=2$ 两点外处处可导, 且 $F^{\prime}(x)=f(x)$. 由此可知: 函数 $F(x)$ 在 $(-1,0)$ 内单调增加, 在 $(0,1)$ 内单调减少, 在 $(1,2)$ 内单调增加, 在 $(2,3)$ 内恒为常数. 由于函数 $F(x)$ 连续, 且 $F(0)=0$, 所以正确选项只能是 $(D)$.
Expand Down Expand Up @@ -98,10 +98,10 @@ https://www.bilibili.com/video/BV1Lu411T76t
- 对概率密度乘X积分得到期望:$E(X)$($X$ 的期望值)
- $\displaystyle E(X) = \int_{-\infty}^{+\infty} x F'(x) dx=0.3 \int_{-\infty}^{+\infty} x \Phi'(x) dx+0.35 \int_{-\infty}^{+\infty} x \Phi'\left(\frac{x-1}{2}\right) dx$
- 因为是正态分布,从正无穷到负无穷都可以取到
- $\displaystyle \xlongequal[]{正态的概率密度}\int_{-\infty}^{+\infty} 0.3 x \varphi(x) \mathrm{d} x+\int_{-\infty}^{+\infty} 0.35 x \varphi\left(\frac{x-1}{2}\right) \mathrm{d} x$
- $\displaystyle \int_{-\infty}^{+\infty} 0.3 x \varphi(x) \mathrm{d} x\xlongequal[]{提出系数}0.3 \int_{-\infty}^{+\infty} x \varphi(x) \mathrm{d} x\xlongequal[]{\int_{-\infty}^{+\infty} x \varphi(x) \mathrm{d} x=0}0$
- $\displaystyle \int_{-\infty}^{+\infty} 0.35 x \varphi\left(\frac{x-1}{2}\right) \mathrm{d} x\xlongequal[x=2 u+1, \mathrm{~d} x=2 \mathrm{~d} u]{换元\frac{x-1}{2}=u}\int_{-\infty}^{+\infty} 0.7(2 u+1) \varphi(u) \mathrm{d} u$
- $\displaystyle \xrightarrow[]{拆开}=1.4 \underbrace{\int_{-\infty}^{+\infty} u\varphi(u) \mathrm{d} u}_{=0}+0.7 \underbrace{\int_{-\infty}^{+\infty} \varphi(u) \mathrm{d} u}_{=1}=0.7$
- $\displaystyle \xlongequal[]{\text{正态的概率密度}}\int_{-\infty}^{+\infty} 0.3 x \varphi(x) \mathrm{d} x+\int_{-\infty}^{+\infty} 0.35 x \varphi\left(\frac{x-1}{2}\right) \mathrm{d} x$
- $\displaystyle \int_{-\infty}^{+\infty} 0.3 x \varphi(x) \mathrm{d} x\xlongequal[]{\text{提出系数}}0.3 \int_{-\infty}^{+\infty} x \varphi(x) \mathrm{d} x\xlongequal[]{\int_{-\infty}^{+\infty} x \varphi(x) \mathrm{d} x=0}0$
- $\displaystyle \int_{-\infty}^{+\infty} 0.35 x \varphi\left(\frac{x-1}{2}\right) \mathrm{d} x\xlongequal[x=2 u+1, \mathrm{~d} x=2 \mathrm{~d} u]{\text{换元}\frac{x-1}{2}=u}\int_{-\infty}^{+\infty} 0.7(2 u+1) \varphi(u) \mathrm{d} u$
- $\displaystyle \xrightarrow[]{\text{拆开}}=1.4 \underbrace{\int_{-\infty}^{+\infty} u\varphi(u) \mathrm{d} u}_{=0}+0.7 \underbrace{\int_{-\infty}^{+\infty} \varphi(u) \mathrm{d} u}_{=1}=0.7$
## (8)
设随机变量 $X$ 与 $Y$ 相互独立, 且 $X$ 服从标准正态分布 $N(0,1), Y$ 的概率分布为 $P\{Y=0\}=$ $P\{Y=1\}=\frac{1}{2}$. 记 $F_{Z}(z)$ 为随机变量 $Z=X Y$ 的分布函数, 则函数 $F_{Z}(z)$ 的间断点个数 为 ( ) (A) 0 . (B) 1 . (C) 2 . (D) 3 .
## (8)解
Expand All @@ -113,10 +113,10 @@ https://www.bilibili.com/video/BV1Lu411T76t
- $Z = XY$
- 计算 $F_Z(z)$ 的过程
- 使用全概率公式
- $F_Z(z) =P\{Zz\} \xlongequal[]{Z=XY}P\{XY \leq z\}$
- $F_Z(z) =P\{Z\text{≤}z\} \xlongequal[]{Z=XY}P\{XY \leq z\}$
- 全集分解为 $Y = 0$ 和 $Y = 1$ 的情况
- 当 $Y = 0$:$P\{XY \leq z | Y = 0\} \xlongequal[]{将Y=0代入} P\{0 \leq z\}·\underbrace{P\{Y=0\}}_{=\frac12}$
- 当 $Y = 1$:$P\{XY \leq z | Y = 1\} \xlongequal[]{将Y=1代入}P\{X \leq z\}·P\{Y=1\}$
- 当 $Y = 0$:$P\{XY \leq z | Y = 0\} \xlongequal[]{\text{将}Y=0\text{代入}} P\{0 \leq z\}$ ·$\underbrace{P\{Y=0\}}_{=\frac12}$
- 当 $Y = 1$:$P\{XY \leq z | Y = 1\} \xlongequal[]{\text{将}Y=1\text{代入}}P\{X \leq z\}$ ·$P\{Y=1\}$
- 结合各种情况
- $F_Z(z) = \frac{1}{2}(P\{0 \leq z\} + P\{X \leq z\})$
- 得到 $F_Z(z)$ 的分段函数
Expand Down Expand Up @@ -150,7 +150,7 @@ x x y
- 使用链式法则得:$\frac{\partial z}{\partial x} = f_1^{\prime} + y f_2^{\prime}$。
- 计算二阶混合偏导数 $\frac{\partial^2 z}{\partial x \partial y}$。
- 对 $\frac{\partial z}{\partial x}$ 关于 $y$ 求偏导得:
- $\frac{\partial^2 z}{\partial x \partial y} = \underbrace{f_{11}^{\prime \prime} \cdot 0 + x f_{12}^{\prime \prime} }_{f_1^{\prime}对y求偏导}+ \underbrace{f_2^{\prime} + y(f_{21}^{\prime \prime} \cdot 0 + x f_{22}^{\prime \prime})}_{y f_2^{\prime}对y求偏导}$。
- $\frac{\partial^2 z}{\partial x \partial y} = \underbrace{f_{11}^{\prime \prime} \cdot 0 + x f_{12}^{\prime \prime} }_{f_1^{\prime}\text{对}y\text{求偏导}}+ \underbrace{f_2^{\prime} + y(f_{21}^{\prime \prime} \cdot 0 + x f_{22}^{\prime \prime})}_{y f_2^{\prime}\text{对}y\text{求偏导}}$。
- 简化得:$x f_{12}^{\prime \prime} + f_2^{\prime} + xy f_{22}^{\prime \prime}$。

- 得到最终结果。
Expand Down Expand Up @@ -247,7 +247,7 @@ x x y

- 求函数 $f(x, y)$ 在驻点的二阶偏导数(考点:乘法求导)
- (通过AC-B²判断是否有极值点,通过A的正负判断是否是极大值还是极小值)
- $A = f_{xx}^{\prime\prime}\left(0, \frac{1}{\mathrm{e}}\right) =\left(2+y^2\right) \cdot 2=\left(2+e^{-2}\right) \cdot 2>0,则极小值$
- $A = f_{xx}^{\prime\prime}\left(0, \frac{1}{\mathrm{e}}\right) =\left(2+y^2\right) \cdot 2=\left(2+e^{-2}\right) \cdot 2>0$ ,则极小值
- $B = f_{xy}^{\prime\prime}\left(0, \frac{1}{\mathrm{e}}\right) =2 x \cdot(2 y)=0= 0$
- $C = f_{yy}^{\prime\prime}\left(0, \frac{1}{\mathrm{e}}\right)=2 x^2+\frac{1}{y}=\frac{1}{e^{-1}} = \mathrm{e}$,因此:$A C-B^2>0$

Expand Down
Loading

0 comments on commit acf7b0d

Please sign in to comment.